
Nature Electronics | Volume 6 | July 2023 | 479–490 479

nature electronics

https://doi.org/10.1038/s41928-023-00977-1Perspective

Materials and devices as solutions to
computational problems in machine
learning

Nathaniel Joseph Tye    1,2, Stephan Hofmann1 & Phillip Stanley-Marbell    1 

The growth of machine learning, combined with the approaching limits
of conventional digital computing, are driving a search for alternative and
complementary forms of computation, but few novel devices have been
adopted by mainstream computing systems. The development of such
computer technology requires advances in both computational devices
and computer architectures. However, a disconnect exists between the
device community and the computer architecture community, which limits
progress. Here we explore this disconnect with a focus on machine learning
hardware accelerators. We argue that the direct mapping of computational
problems to materials and device properties provides a powerful route
forwards. We examine novel materials and devices that have been
successfully applied as solutions to computational problems: non-volatile
memories for matrix-vector multiplication, magnetic tunnel junctions for
stochastic computing and resistive memory for reconfigurable logic. We
also propose metrics to facilitate comparisons between different solutions
to machine learning tasks and highlight applications where novel materials
and devices could potentially be of use.

For over 50 years, silicon has been the dominant material in computing
devices. The success of silicon and silicon-based metal–oxide–semi-
conductor field-effect transistors (MOSFETs) in particular is due to a
number of attributes: stable oxide formation (silicon forms a stable
native oxide layer); abundance (silicon is the second most abundant ele-
ment in Earth’s crust1); miniaturization and mass production (MOSFETs
can be miniaturized and mass-produced2); and power efficiency (com-
plementary metal–oxide–semiconductor (CMOS) technology com-
bines n-type and p-type MOSFETs into a single device that consumes
power only when the device switches). The resulting digital computing
devices must then have a number of general features3: gain (high gain
in each component reduces issues arising from interdevice variation
by using reference signal levels throughout a system to prevent signal
degradation); input and output isolation (inputs and outputs must be
isolated from each another to ensure that calculations are carried out
in a predetermined manner); comparable on and off switching times

(the switching time between the on and off states must also be com-
parable, otherwise a separate reset operation is needed, adding time
and material costs); and inversion (a computer device must be able to
convert a one to a zero and vice versa).

The rise of new application classes, such as machine learning (ML)
is pushing the limits of conventional digital computing. For instance,
ML training compute demands have doubled every two months since
20194. This has typically been addressed by using larger numbers of
processors such as graphics processing units (GPUs). However, this
is an inefficient and unsustainable approach. As a result, there is an
active search for alternative and complementary forms of computa-
tion. But despite considerable research effort, few novel devices have
been adopted in mainstream computing systems.

ML is an approach to computation in which the computational
process is learned from data. A dataset with one or more features
(variables) has an associated output. ML is the attempt to discover

Received: 17 November 2021

Accepted: 12 May 2023

Published online: 26 July 2023

 Check for updates

1Department of Engineering, University of Cambridge, Cambridge, UK. 2Cambridge Graphene Centre, University of Cambridge, Cambridge, UK.
 e-mail: phillip.stanley-marbell@eng.cam.ac.uk

http://www.nature.com/natureelectronics
https://doi.org/10.1038/s41928-023-00977-1
http://orcid.org/0000-0003-2600-1370
http://orcid.org/0000-0001-7752-2083
http://crossmark.crossref.org/dialog/?doi=10.1038/s41928-023-00977-1&domain=pdf
mailto:phillip.stanley-marbell@eng.cam.ac.uk

Nature Electronics | Volume 6 | July 2023 | 479–490 480

Perspective https://doi.org/10.1038/s41928-023-00977-1

opportunities for neuromorphic algorithms, namely, those that use
spiking neural networks (SNNs)17. These opportunities fall into two
broad categories of algorithmic approaches: those for ML applications
and those for non-ML applications. In each case, the algorithms use
an SNN, but ML applications require a training process whereas the
non-ML applications use a hand-constructed SNN. The structure of
an SNN is a directed graph and so these hardware SNNs can accelerate
computations for graphs.

Neuromorphic hardware can also perform random-walk com-
putations, with discrete-time Markov chains implemented on Intel’s
Loihi and IBM’s TrueNorth platforms18. In addition, the development
of perovskite-based devices that can be reconfigured to function as
neurons, synapses, resistors or capacitors may prove to be particularly
useful19; neurons and synapses are key components of hardware SNNs,
and being able to selectively configure circuit elements to implement a
specific algorithm or ML architecture could have considerable impact.

Points of disconnect
We identify disconnections between the device community and the
computer architecture community in four areas: ML hardware ver-
sus software; the decline of CMOS; in-memory architectures; and ML
workloads and Amdahl’s law.

ML hardware versus software
The Modified National Institute of Standards and Technology (MNIST)
optical character recognition task21 is a common benchmark in ML and
involves classification of handwritten digits between zero and nine.
The MNIST dataset consists of 60,000 training examples and 10,000
test examples of handwritten digits, where each example is a 28 × 28
pixel greyscale image. Figure 2c shows the accuracies of several digital
and silicon CMOS-based accelerators and approaches based on novel
materials and devices against a given year. (Supplementary Tables 1
and 2 provide the data in this figure.)

The low accuracy for approaches based on novel materials and
devices when compared with those based on digital silicon- and
CMOS-based hardware (including software-programmable proces-
sors and GPUs), or fixed-function application-specific integrated
circuits (ASICs) and other accelerators, is immediately apparent.
ASIC accuracies lag software approaches by about 10 years, despite
ASICs being a mature technology. ASIC and programmable hardware
approaches both show a trend of progress, becoming more accurate
over time. This, however, is not true for approaches based on resistive
random-access memories (RRAMs) or other experimental devices.
The ‘other’ approaches category is not a unified technology, but rather
a range of different implementations. Thus a comparison is of lim-
ited value. These are included here instead to indicate the accuracies
reported for approaches outside the most popular ones.

the mathematical function that depends on these features and most
accurately predicts the output. There are three key elements in ML
methods: representation, evaluation and optimization5–7. In short,
representations are the ML model, evaluations are a cost function or
error metric, and optimizations are a method to determine the best
representation.

ML methods and ML algorithms are not the same thing. For exam-
ple, an ML implementation that uses a neural network as its represen-
tation, mean squared error as its evaluation and greedy search as its
optimization will be made up of several algorithms (see Table 1 for
examples). Most ML hardware accelerators focus on representations.
For example, using novel devices to represent artificial neural network
(ANN) neurons. However, other components of an ML algorithm could
be accelerated as well. (See Supplementary Section 1 for a more detailed
overview of ML, and Supplementary Section 2 for an overview of hard-
ware accelerators for different ML representations.)

The development of computer technology for ML requires
advances in both computational devices and computer architectures.
However, a disconnect exists between the device community and the
computer architecture community that poses a considerable hurdle
to progress. In this Perspective, we explore the disconnect between
communities with a focus on ML hardware accelerators. We argue
that the direct mapping of computational problems to materials and
device properties provides a route forwards (Fig. 1) and we examine
novel materials and devices that have been successfully applied as
solutions to computational problems (non-volatile memories for
matrix-vector multiplication (MVM), magnetic tunnel junctions for
stochastic computing and resistive memory for reconfigurable logic).
We then propose metrics to facilitate comparisons between different
solutions to ML tasks and highlight applications where novel devices
and materials could potentially be of use.

ML accelerators
Many ML accelerators are described as neuromorphic, as their design
is influenced, in part, by biological systems. However, the term neuro-
morphic is not well defined. For example, a hardware realization of a
deep neural network (DNN) using logic gates to perform MVM might
be referred to as a neuromorphic system, despite possessing no real
resemblance to the brain. However, a system with artificial neurons and
synapses might be referred to as neuromorphic. These systems include
IBM’s TrueNorth8 (which features neurons and synapses), Intel’s Loihi9
(which features synapses, dendrites and axons) and Tianjic10 (which
features axons, synapses, dendrites and somas).

Attempts to simulate the brain, such as SpiNNaker11, may also be
considered neuromorphic, although SpiNNaker uses large arrays of
processors, corresponding to a much larger area and energy consump-
tion than the brain. Currently, the density of neurons and synapses
in the brain far exceeds that of electronics technology, but suitable
applications of materials and devices may close this gap. Our current
understanding of the brain and animal nervous systems is also relatively
limited, and much of the modern device literature relies on the neural
network model of McCulloch and Pitts12, and the Hodgkin–Huxley
model of spiking neurons13. Although these have proven to be success-
ful for neural networks, there are a number of more recent and more
accurate neuron models14–16.

We suggest that ‘neuromorphic’ be used exclusively to refer to
systems that emulate biological components, rather than a general
term for ML accelerators. We also suggest that neuromorphic hardware
be categorized into two broad domains: systems that draw inspiration
from biology and perform computations (such TrueNorth, Loihi and
Tianjic), which are termed bio-inspired; and systems that simulate the
brain (such as SpiNNaker), which are termed bio-mimetic. Such a dis-
tinction allows for a clearer understanding of a given system’s purpose.

Neuromorphic accelerators provide a good example of
inter-domain collaboration. For example, recent work highlights the

Table 1 | The three components of machine learning methods

Representation Evaluation Optimization

Instances
 k-nearest neighbour
 Support vector
machines

Error rate
Combinatorial
 Greedy search
 Beam search
 Branch-and-bound

Precision and recall

Hyperplanes
 Naive Bayes
 Logistic regression

Squared error

Likelihood
Continuous
Gradient descent
Quasi-Newton
methods
Conjugate gradient
Linear programming
Quadratic
programming

Decision trees Posterior probability

Neural networks Information gain

Graphical models
 Bayesian networks
 Conditional random
fields

Kullback–Liebler divergence

Cost/utility

Margin

Information adapted from ref. 6.

http://www.nature.com/natureelectronics

Nature Electronics | Volume 6 | July 2023 | 479–490 481

Perspective https://doi.org/10.1038/s41928-023-00977-1

Although early work with RRAM dates back to 196522, progress
was slow for several decades owing to the success of charge-storage
memories. Thus, it is a relatively youthful technology compared with
CMOS, fixed-function accelerators and software. Despite a renewed
research interest in the past decade, there is no clear trend of increasing
accuracy over time. The scarcity of full-scale physical realizations of
such systems is a noted issue23,24, but remains an important step. These
systems are difficult engineering challenges, and would benefit from
research collaboration at each level of abstraction. As well as scalable
fabrication developments for existing devices, research into novel
devices where large-scale manufacturing is not necessary could also
enable more immediate application of novel technologies.

It is not uncommon in device research articles to see claims that
experimental accuracies of 90%, for example, are comparable to a
simulated hardware accuracy of 94%. Initially, this might appear rela-
tively close. However, when the difference between the best and the
tenth-best digital approaches is only 0.09 percentage points, a 4.4
percentage point difference is almost 50 times larger. Of course, the
raw numbers do not tell the entire story. Leading digital approaches
often have millions of parameters. One of the top algorithms at the
time of writing has 1,514,187 trainable parameters25. In comparison,
implementations based on novel materials and devices may have only
hundreds and thus can be expected to not perform as well. This makes
it clear that better metrics are required.

The decline of CMOS
A common notion in the device literature is the decline of CMOS, and
articles often appear to treat CMOS circuits as synonymous with digital
circuits and the von Neumann architecture. This is not the case. The
von Neumann architecture is a model of computation, whereas CMOS
is a fabrication process. Furthermore, many novel devices, includ-
ing RRAMs, can be fabricated using CMOS processes and some of the
best-performing ML accelerators for MNIST, such as IBM’s TrueNorth8,
use a CMOS process. This illustrates the importance of distinguishing
between (digital) CMOS and the von Neumann architecture.

Many ML hardware accelerators exceed the performance of Tru-
eNorth26, including Google’s tensor processing unit (TPU)27, which is an
accelerator for conventional ANNs and thus mainly accelerates linear
algebra computations. There is, however, a strong trend of increas-
ing power consumption being associated with higher performance.
CMOS remains the most successful technology for computing devices,
regardless of the computer architecture they implement. Simply rec-
reating CMOS devices using novel materials, while maintaining the
same fundamental way of doing computation, that is, keeping the
same architecture, has limited impact28, as few match or better CMOS.

It is too early to say whether, under alternative computing
approaches, CMOS technology will remain dominant and so it remains
worthwhile to investigate different technologies. A hybrid approach,
where new materials and devices are integrated into CMOS processes
is one possible avenue. Alternatively, technologies such as probabil-
istic bits (p-bits), where the fundamental nature of the computation
relies on completely different device and material properties, mean it
is likely that CMOS will not be the best technology for all applications.

It is also important to note that model selection is equally impor-
tant. For digital approaches, the ML model is often the key research
focus, whereas, in the device domain, the device is the research focus.
ML accelerators based on novel devices and materials would probably
see performance gains if they implement ML models that are specifi-
cally designed to harness their properties and structures.

In-memory architectures
Many novel computing devices and circuits are often referred to as
in-memory computing. This is an idea that attempts to address the von
Neumann bottleneck. This bottleneck is the limitation in computational
throughput inherent to von Neumann computers due to the separation
of memory and processing (in particular, the shared program and data
memory bus), which means that, while fetching instructions, a von
Neumann computer cannot fetch any data to perform computations.
In-memory computing addresses this bottleneck by co-locating com-
putation and memory. Here the memory devices themselves perform

Microarchitecture:

Definition of ALUs, buses, registers…

Register-transfer-level design:

Gates, flip-flops, adders…

Fabrication:

Process node, materials
(for example, gate oxides), packaging

Algorithm design, implementation and
compilation:

Computational problem specification:

Search, matrix operations, sorting…

Algorithm implemented in a suitable
programming language compiled to a

target ISA

Material discovery:

Growth, characterization…

Device development:
Materials combinations, conduction

mechanisms…

Application search:

Matching device properties to a
computational problem, for example, integer

factorization, MVM...

Circuit integration:

Circuit topologies, device arrays…

Computer architectures Device physicsBridging the gap

Computer architectures:
Instruction set
development
Incorporation of novel
circuits into
microarchitecture
Compiler
development

Device physics:
Materials selection/
engineering
Device development
Integration with other
components, for example,
CMOS compatibility

Both:
Application context (for example, disposable electronics)
System constraints and desired performance metrics (energy per
operation, data throughput…)

Fig. 1 | Development process for an integrated circuit from the perspective
of a computer architecture and a device physicist. For a computer architect,
the process typically begins by identifying a specific computational problem79,
an implementation of a specific algorithm and then a survey of existing
technologies to arrive at a given implementation; in essence, a top-down
approach. For a device physicist, the process begins with materials discovery,

followed by device fabrication and then integration of devices into a larger
circuit; a bottom-up approach, or a solution looking for a problem. The two
processes currently intersect only at the end (fabrication and circuit integration).
By intersecting earlier and by mapping computational problems to devices and
materials, each step in each community can be brought together, creating more
impactful research. ISA, instruction set architecture.

http://www.nature.com/natureelectronics

Nature Electronics | Volume 6 | July 2023 | 479–490 482

Perspective https://doi.org/10.1038/s41928-023-00977-1

computations and so computation can occur in parallel with instruction
access. However, the von Neumann architecture is not necessarily the
dominant computer architecture in modern machines: the (modified)
Harvard architecture is (Boxes 1 and 2; see also Supplementary Section 3
for an overview of computer architectures).

In practice, the majority of in-memory architectures are not com-
puter architectures in the same sense as a von Neumann or Harvard
architecture. Rather, they are circuits that perform a specific function,
such as MVM. This makes them more akin to the arithmetic logic unit
(ALU) or floating-point unit (FPU) in a hardware microarchitecture.

FPUs began as discrete components before being incorporated into
conventional von Neumann or Harvard architectures, and the same may
be true for in-memory approaches. Figure 2a illustrates how an MVM
circuit could be incorporated into a complete computer architecture
as a linear algebra unit. Because computer architectures require both
program and data memory, the former to store instructions and the lat-
ter to store data, an in-memory architecture would still require circuitry
for data input–output and storing and fetching instructions (Fig. 2b).

ML workloads and Amdahl’s law
Workload characterization is an important part in understanding the
computational demands of a given task. A breakdown of the execu-
tion time of eight contemporary DNNs implemented in TensorFlow,
a standard ML framework (Table 2) provides a useful example of
this29. The study investigates eight DNNs for different tasks, includ-
ing sequence-to-sequence translation (text translation), end-to-end
memory networks (natural language reasoning), deep speech (speech
recognition), variational autoencoder (feature extraction, dimen-
sionality reduction), residual networks (meta-learning), VGG-19
(computer vision), AlexNet (computer vision) and deep Q (deep
reinforcement learning).

1995 2000 2005 2010 2015 2020

Year

60

65

70

75

80

85

90

95

100

Vn

I1

G1 G2 G3 G4 Gn

I2 I4 InI3

V4

DAC

ADC

ALU

a

c

b

FPU, ALU...

I/O

I/O

Control unit

Control unit

Memory unit

Data compute
memory

Program
memory

FPU

LAU

DAC

DAC

DAC

DAC

Re
co

gn
iti

on
 ra

te
 (%

)

Programmable hardware
ASIC
RRAMs
Other novel devices

V3

V2

V1

Fig. 2 | Hardware solutions to computational problems. a, A one-resistor
RRAM crossbar array, and how such a circuit can be incorporated into a complete
computer architecture, in this case, a von Neumann architecture. Alternative
crossbar implementations may have a RRAM connected to a transistor (1T1R) to
allow for individual device selection, or may use pairs of RRAMs to encode signed
values80. ADC, analogue-to-digital converter; LAU, linear algebra unit; I/O, input–
output. b, Schematic illustrating how an in-memory circuit may be incorporated
into a complete computer architecture as data compute memory. In this case,
the separate program and data memories make this a Harvard architecture.
The control unit fetches and executes instructions from the program memory,
including commands for in-memory computations to be performed, and can also
fetch and send data to the FPU and ALU for processing. c, Scatter plot showing
the reported accuracies on the MNIST dataset of several technologies currently
being researched. Supplementary Tables 1 and 2 provide the models and details
of these. V, input voltage; G, RRAM conductance; I, output current.

Box 1

Definitions
Computational problem: a relationship between a set of inputs
and outputs that defines some problem a computer can solve. For
example, the problem of factorization takes some number as an
input and has the factors of that number as an output.

Algorithm: a sequence of operations that transforms some input
into an output, which is the solution to a computational problem,
independent of implementation.

Computer architecture: an abstract description of a computer,
such as an instruction set architecture, which defines functionality
but not the physical implementation.

Computer device: an individual device used to represent data for
computation, for example, a transistor, or a RRAM.

Software: an implementation of an algorithm or algorithms
generally intended to be executed on reprogrammable digital
CMOS hardware (for example, a microprocessor).

Neuromorphic system: a hardware device or circuit inspired by the
behaviour of biological neural systems.

Fixed-function digital hardware: a device or circuit that processes
data using digital logic in a fixed manner. For example, an H.264
decoder is an ASIC designed to decode video streams encoded in a
common format.

Programmable architectures: a piece of hardware that can be
reprogrammed for arbitrary functionality, such as a microprocessor.
Such a system reuses the same logic elements for different
applications.

Hardware microarchitecture: the physical specification of an
instruction set architecture, defining ALUs, buses, registers and
so on.

http://www.nature.com/natureelectronics

Nature Electronics | Volume 6 | July 2023 | 479–490 483

Perspective https://doi.org/10.1038/s41928-023-00977-1

Direct TensorFlow matrix operations dominate the execution time
in only two of the eight networks: deep speech (89%) and variational
autoencoder (58%). For VGG-19, AlexNet, deep Q and residual networks,
over 80% of the execution time was taken up by convolution operations,
predominantly Conv2D, which is mainly a dot product operation. The
other two convolution operations, Conv2DBackpropFilter and Con-
v2DBackpropInput are, however, not purely matrix operations, but
also involve calculation of gradients, that is, differentiation.

Processing in-memory systems also exhibit similar trends30, with
convolution operations being the most computationally intensive
across three ANN models (VGG-19, AlexNet and a deep convolutional
generative adversarial network). This analysis also showed comparable
operation times for in-memory and conventional central processing
units (CPUs), with in-memory solutions being faster overall due to the
reduced data transfer times. One interesting example is the text transla-
tion task. In this, over 50% of the execution time does not involve matrix
operations, but rather element-wise and data movement operations.
These characterizations only explore ANNs, however, and alternative
ML methods may benefit from similar characterizations.

It is important here to also consider Amdahl’s law31. This states that
the performance gained by optimizing one part of a system is limited
by the proportion of time the improved part is used. Even though an
accelerator may improve the performance of an operation, such as
MVM, if that operation is only a small part of the execution time of a
method, then the overall performance improvement will be minimal.

We also note that the most successful accelerators are fully inte-
grated solutions, rather than a circuit performing a specific computa-
tion (Fig. 3c)26. This means their development involves input at multiple
layers of abstraction, from the device level to the architecture level.
Researchers at Google have, for instance, described the key considera-
tions for the development of their v2 and v3 TPUs27, where tasks were
divided into two groups: those that need to be done well and those that
can be done to a working level.

The tasks that must be done well consisted of: build quickly (fast
design and fabrication of hardware, such as using readily available
components and ‘good enough’ designs); achieve high performance
(high-bandwidth buses and memory, systolic array structure for high
computation density, use of the bfloat16 format, instruction-level
parallelism); scale efficiently (ability to add multiple processors to
cope with increasingly complex problems and datasets); easily adapt to
new workloads (bfloat16 is easy for ML software to use, chip developed
alongside compiler team to ensure programmability, the terminol-
ogy of linear algebra used due to its generality); and be cost effective
(the systolic array structure allows high density without demanding a
large chip area, bfloat16 reduces hardware and energy costs, dual-core
design, compiler-controlled memory hierarchy). This illustrates the
importance of considering not just the device but also the compiler,
the data precision and the instruction-level architecture.

Novel devices as alternatives to digital silicon
electronics
Traditional semiconductor roadmaps rely on the continuation of scal-
ing laws and thus a key focus of device and materials research is explor-
ing potential replacement to conventional silicon and digital CMOS.
However, many novel technologies fail to compete with digital CMOS
on metrics of energy, speed, scalability and price. However, this does
not make them non-starters for computing applications. For example,
in the analogue domain, the addition of two parallel 8-bit numbers
requires only a single wire, using Kirchhoff’s current law, but a digi-
tal CMOS circuit requires approximately 240 transistors32. Analogue
multiplication requires 4 to 8 transistors, whereas digital multiplica-
tion demands as many as 3,000 transistors. Non-digital approaches
can thus offer notable improvements in the efficiency and resource
requirements of certain computations.

We highlight here three examples of such complementary tech-
nologies, where novel devices and materials are applied as solutions
to computational problems. (See Supplementary Section 4 for an
overview of novel devices as alternative to digital silicon electronics.)

Non-volatile memories for MVM
One example of mapping a computational problem to novel devices
is the commonly explored use of non-volatile memories in crossbar
arrays (Fig. 2a) to implement MVM operations. These use Ohm’s law

Box 2

Computer architectures
The von Neumann architecture stores program and data memory
in the same place, whereas the Harvard architecture stores them
separately. The main limitation of the von Neumann architecture is
that, while loading an instruction from program memory, it cannot
load or process data.

Von Neumann architecture:

Harvard architecture:

Input
device

Output
device

Memory unit

Program
memory Data memory

ALU

Central processing unit

Control unit

I/O

Registers

ALU

Control unit

Table 2 | Dominant TensorFlow operation categories in
contemporary ML workloads

TensorFlow operation Computational problems

Element-wise arithmetic Addition, subtraction, multiplication,
division, exponentiation, logistic function

Matrix operations Matrix multiplication

Reduction and expansion Logistic function, search, gradient, addition

Convolution Matrix multiplication, differentiation

Random sampling Non-uniform random number generation

Optimization Moving average, differentiation

Data movement Array operations

Dominant TensorFlow operation categories in contemporary ML workloads29 and their
underlying computational problems.

http://www.nature.com/natureelectronics

Nature Electronics | Volume 6 | July 2023 | 479–490 484

Perspective https://doi.org/10.1038/s41928-023-00977-1

and Kirchhoff’s law, where the sum of currents from each device gives
a final output current. The value of the output current corresponds to
a particular signal strength. The major attraction of this approach for
computer architects is that it substantially reduces the complexity of
the MVM operation.

Using the non-volatile memory crossbar approach, the entire
operation in the analogue domain is completed in a single digital cir-
cuit’s clock cycle, reducing the complexity from 𝒪𝒪𝒪n2) to 𝒪𝒪𝒪1) (ref. 33),
that is, constant time. (See Supplementary Section 5 for an overview
of computational complexity theory and big-O notation.) In Supple-
mentary Section 5, we note that an algorithm’s complexity is independ-
ent of the hardware on which it is running, that is, an algorithm will
remain 𝒪𝒪𝒪n2) regardless of implementation, and this remains the case
here. MVM takes 𝒪𝒪𝒪n2) time in software running on a CPU and 𝒪𝒪𝒪n)
space in memory. In contrast, MVM takes 𝒪𝒪𝒪1) time using a crossbar,
but it requires 𝒪𝒪𝒪n2) devices to perform. The complexity thus transfers
from time to space, as the crossbar performs the MVM operation, rather
than the CPU.

A key advantage of non-volatile memories in the above example
is that only one or two devices are required (for example, one memory
or one transistor and one memory, depending on the system con-
figuration), compared with potentially thousands using digital logic,
meaning a substantial reduction in materials, and thus potential for
higher-density circuits.

As an active field of research, non-volatile memory crossbars
have been demonstrated for a range of ML implementations, includ-
ing DNNs34, convolutional neural networks (CNNs)35,36 and SNNs37–39.
However, non-volatile memory implementations face a number of
well-established challenges, including interdevice variation, cycle
endurance and parasitic wire resistance, which becomes an issue in the
large arrays required by modern ML applications. These are engineer-
ing challenges that can be solved through research in multiple domains,
with a large part of this being addressed by the materials community.
For example, wire resistance can be reduced by three-dimensional
(3D) integration40, and physical mechanisms such as Mott transition

RRAM can be exploited to reduce variability and improve endurance41.
Avenues for improving RRAM performance include: interface engi-
neering, element doping of functional materials and introduction of
low-dimensional materials42. Non-volatile memory-based implementa-
tions of CNNs offer a solution to some of the scalability issues affecting
fully connected solutions. In particular, they require fewer weights and
thus fewer devices, reducing both the influence of parasitic resistances
and the precision issues resulting from interdevice variation. Thus,
non-volatile memory approaches would also benefit from suitably
designed CNN architectures.

Magnetic tunnel junctions for stochastic computing
Although magnetic random-access memories (MRAMs) have been pro-
posed as a potential ‘universal memory’43, they also have applications
for computation. One particularly interesting application is proba-
bilistic computing using magnetic tunnel junctions (MTJs) as p-bits.
The term p-bit initially described a switch that stores a bit, either 1 or
0, by representing the bit as a microstate44. A microstate is a specific
microscopic configuration that a thermodynamic system occupies
with some probability. Contemporary work instead considers p-bits as
a computational primitive analogous to bits in Boolean logic, or qubits
in quantum computing45. Unlike bits, which are either 1 or 0 at a given
moment, or qubits, which exist in a superposition of states, where
they are both 1 and 0, p-bits rapidly flip between 1 and 0 and so have a
probability of being 1 or 0 at a given moment. In essence, p-bits are a
hardware implementation of a Bernoulli random variable. This property
allows for them to directly perform computations on probabilities,
athough p-bits also have quantum-inspired and ML applications46.
For example, p-bits can implement adiabatic quantum computing
algorithms to perform integer factorization47, by considering it as an
optimization problem.

Although not implementing p-bits specifically, strained magnetic
tunnel junctions (S-MTJs) can be used for probabilistic computation48.
In this approach, the magnetic domain of the S-MTJ represents a prob-
ability vector, with each digit representing a possible outcome of a

Technology

Input data

a

c

bNumber of
device
layers

Device
count

Total system power

Die
volume

Inference error

Energy per inference

Time per inference

Device
count

Die area
(mm2)

DEE
(% mm–2)

Number
of

layers

Einf
(J)

tinf
(s)

Error
(%)

DTP
(bits s–1)

EE
(%)

Ref.

OxRAM 7.72 × 104 0.0772 1 1.7 34

3D
memristor

5.94 × 104 0.95 8 1.9 1.9 35

Memristor 2.62 × 103 0.563 1 3.81 30.5 64

CMOS 5.4 × 109

4.48 × 10–6

1.59 × 10–3

1.87 × 10–5

1.08 × 10–4

1 × 10–6

2.12 × 10–5

3.14 × 10–4

1 × 10–3

62.72 × 109

2.96 × 108

2 × 107

6.27 × 106

1.7 × 106 2.99 × 105

9.5 × 105

1.77 × 106

7.28 × 106430 1 0.58 0.994 8

0.1

62.7

0.9

72.8

1.0

2.99 × 105

DTP (×108)

DEE (×106)

EE

Ref. 34

Ref. 35

Ref. 64

Ref. 8

Inference accelerator

Fig. 3 | Metrics for evaluating a given solution to an ML task. a, Diagram
showing a black-box accelerator and the corresponding input–output
information for the metrics. b, Radar plot comparing four ML hardware
accelerators8,34,35,64. c, Table showing the data from ML accelerators in the
literature used to determine figures of merit. Each is for inference on the MNIST

dataset21. The data size in each case is the number of pixels (784 in a 28 × 28
image) multiplied by the number of bits per pixel (8 bits in a 255-shade greyscale
image), giving a total of 6,272 bits. For DTP, higher is better; for DEE and EE, lower
is better. The OxRAM and memristor systems all use a 1T1R structure, whereas the
digital system uses digital CMOS technology.

http://www.nature.com/natureelectronics

Nature Electronics | Volume 6 | July 2023 | 479–490 485

Perspective https://doi.org/10.1038/s41928-023-00977-1

discrete random variable, as opposed to using MTJs as a p-bit. Com-
pared with an implementation of the same Bayesian network using
5-bit digital CMOS multipliers, S-MTJ simulations suggest area reduc-
tions of up to 127 times, a 214-times power reduction and a 70-times
lower latency.

The key difference between p-bits and MRAMs is that p-bits make
use of a typically undesirable property of MTJs: the instability resulting
from superparamagnetism. Superparamagnetism is the phenomenon
whereby, under the influence of temperature, the magnetization of the
magnet randomly flips direction. A high energy barrier (Eb) is desirable
for regular MTJs as it increases the time taken for this flip to occur. For
p-bits, where this flipping is desirable, a low- or zero-barrier magnet,
where Eb < kBT (where kB is Boltzmann’s constant and T is temperature)
is ideal, as the time period for a flip would be less than 1 ns (ref. 46). To
the best of our knowledge, all p-bit implementations utilize a traditional
MTJ structure with bulk materials, and so there is scope for impact-
ful research in this area using two-dimensional materials. These are
predicted to have very low magnetic anisotropy energies: the barrier
of monolayer CrI3 has been measured to be as low as 0.66 meV (ref. 49)
corresponding to a transition time, τN, of about 1 ns. Another candi-
date material, strained Fe-doped MoS2, has a barrier of about 1.3 meV
(ref. 50), corresponding to a τN of 1.06 ns, decreasing with the addition
of strain. For comparison, p-bit approaches using bulk materials give
best-case retention times of a few milliseconds47, with other simulations
giving a time of 1.93 ms (ref. 51). S-MTJs can have retention times of a few
nanoseconds52–54; however, these require an additional piezoelectric
layer, adding material and space costs.

More generally, p-bits are simply tunable random number genera-
tors. Spintronics are just one possible implementation of p-bits: there
may be inherent properties of other materials, that is, controlled sto-
chastic processes, which would be equally useful or even better-suited
to implementing p-bits. This illustrates well the intersection of devices,
materials and computational research. As p-bits offer a fundamentally
different way to do computations by physically representing prob-
abilities, they map computational problems such as Bayesian networks
directly to hardware, which is of interest to both computing and devices
researchers. However, as their performance is directly tied to materi-
als properties, the materials selection and engineering aspect links
directly to the computational problem.

Resistive memories for reconfigurable logic
Although selection of suitable materials for a given application is
important, materials design and engineering also offers an avenue
for substantial impact. Materials design and development may follow a
similar format to product design, serving as a natural interface between
materials developers and system designers55. Likewise, ‘intelligent
matter’56 provides another interesting opportunity. So-called intel-
ligent matter falls into several classes: swarm-based, self-organized
materials, soft-matter implementations and solid-matter implementa-
tions. The final category has been the primary area of exploration for
computing applications, with reconfigurable devices being a growing
area of research.

‘Molecular memristors’57, show how selective engineering of mate-
rials allows for computational functionality to be embedded directly
into materials properties. The molecular memristor uses different
redox states to represent different logic functions, including XNOR,
NAND, NOR, AND and OR on up to four bits, as well as using an array of
devices to implement a decision tree accelerator. The reconfigurable
nature of the devices makes a circuit of them something analogous to
a field-programmable gate array but with a potentially smaller device
footprint. As the devices implement digital logic functionality, their
performance compared with conventional CMOS is of interest. As the
memristors implement logic functions directly in a single device, this
means fewer devices are needed for a given logic gate, reducing the
hardware and materials footprint. Another attractive prospect of this

approach is that the devices have a high cycle endurance (about 1010),
as well as a very low switching energy (360 aJ). The authors note that,
given the intended application of these devices, one must consider also
the energy required to move data, and so system-level metrics are more
sensible for comparison, an idea we discuss in ‘Metrics, applications,
and avenues of collaboration’. Given the digital nature of these devices,
it is also worthwhile to consider how they match Keyes’ criteria3. The
presented devices are passive and so do not have gain, nor do they
appear to have input–output isolation, although the incorporation of
a transistor for a one transistor, one resistive memory (1T1R) structure
might aid with both of these. The devices do, however, appear to have
comparable on–off switching times.

An interesting application of reconfigurable devices would be
hardware implementation of activation functions. For example, 30%
to 40% of the execution time for machine translation using GPUs is
taken up by the final SoftMax activation layer58. Activation functions
are a key part of ANNs, as they introduce nonlinearities to ANNs, which
is vital for deep networks. In SNNs, the activation function acts as a
threshold, determining whether a given neuron should fire. Table 3
shows the most common activation functions and their complexities.
If the wrong activation function is chosen for a given ANN hardware
implementation, then it can severely limit the performance. An imple-
mentation of activation functions that directly exploits material or
device properties may then offer substantial advantages. If some novel
device implements an activation function in the analogue domain and
operates in a single digital clock cycle, then the activation functions
could be reduced to a complexity of 𝒪𝒪𝒪1).

Some work exists in this domain already59,60; however, there does
not yet seem to be a notable focus in this area, despite the potential
impact. For example, machine vision integrating sensing and ANN
processing61 can give reduced hardware footprints, although off-chip
implementation of the activation function introduces communication
and hardware overheads. A fully integrated solution would further
improve the impact of such an approach. Suitably designed reconfigur-
able devices may then simultaneously reduce the hardware footprint
while enabling more general circuitry in this domain.

Metrics
Establishing standard figures of merit to evaluate and compare
approaches is important and some work on benchmarks for ML accel-
erators already exists26,62. These discuss ideas such as quantifying the
energy breakdown for an in-memory accelerator based on SRAM
and RRAM. Inference and training also have different demands. For
example, almost 68% of the energy during training is used for DRAM
access62. Constrained and unconstrained die areas also have an influ-
ence, with 22 nm RRAM-based implementations showing that larger
dies have a lower total energy consumption, at the cost of material

Table 3 | Common activation functions and associated
(worst case) complexities for ANNs

Function Equation Complexity

Identity f(x) = x 𝒪𝒪𝒪n)
Binary step

f𝒪x) = { 0, x < 01, x ≥ 0
𝒪𝒪𝒪1)

Tanh f𝒪x) = tanh𝒪x) 𝒪𝒪𝒪M(n) log(n))a

ReLU
f𝒪x) = { 0, x < 0x, x ≥ 0

𝒪𝒪𝒪n)

Sigmoid f𝒪x) = 1
1+e−x

𝒪𝒪𝒪M(n) log(n))a

ArcTan f𝒪x)tan−1𝒪x) 𝒪𝒪𝒪M(n) log(n))a

M(n) represents the complexity of a given multiplication algorithm. ReLU, rectified linear unit.
aUsing arithmetic-geometric mean iteration20.

http://www.nature.com/natureelectronics

Nature Electronics | Volume 6 | July 2023 | 479–490 486

Perspective https://doi.org/10.1038/s41928-023-00977-1

requirements. For example, a 228 mm2 die for inference requires about
400 μJ of energy, compared with almost 600 μJ for a 6.5 mm2 die. For
space-constrained applications, a 228 mm2 die may be unfeasible, and
this serves as a good example of the trade-offs that are necessary when
considering novel devices as solutions to computational problems.
This work serves as a useful reference when considering the specific
technologies for an RRAM in-memory accelerator. In contrast, the
following metrics we propose are intended as system-level measures,
applicable not just to ANN accelerators but also other accelerators,
such as support vector machines (SVMs) or decision trees.

For standard benchmarks such as MNIST, simply reporting the
classification accuracy is not a good measure, as the best-performing
digital approaches utilize millions of parameters and thus billions of
transistors and clock cycles. When compared with an implementation
based on novel materials with only a few hundred devices, the compari-
son becomes unfair. In keeping with the perspective of viewing novel
devices, materials and circuits as solutions to computational problems,
we suggest that it is better to evaluate systems as black boxes, where
the relations between inputs and outputs are used as performance
indicators. We consider a general accelerator as a black box with the fol-
lowing output information available (Fig. 3a): input data size (number
of bits; the number of bits in the input data for a single inference, for
example, the size of a single image in bits); device count (the number
of devices, that is, the total number of devices (for example, transis-
tors, RRAMs, p-bits and so on) in a system); die area (A; the die area in
mm2); the number of layers (number of layers) (the number of device
layers for 3D-integrated dies); total system power (TSP; the total power
consumed by an accelerator); inference energy (Einf; the total number
of joules required to perform a single inference or classification); infer-
ence time (tinf; the time taken in seconds to perform a single inference);
data size (the size of the input and output data in bits or bytes); error
(error on a given task as a percentage, for example, the percentage of
incorrectly classified digits in MNIST).

Data throughput
Floating-point operations per second (FLOPS) is a common metric
for CPUs and may be useful for ML accelerators if they operate on
floating-point numbers. However, not all ML systems do. For example,
binary ANNs operate on Boolean values, or an ANN may only accept inte-
gers. OPS rather than frames per second may make a better benchmark62
as this is dataset dependent and suited in particular to computer vision
tasks. We instead propose that a better metric is the data throughput
(DTP) of a system, that is, how many bits of data an accelerator can
process in a second. A metric such as multiply-accumulate (MAC) opera-
tions per second would only applicable to accelerators where MVM
is the main operation. For systems such as decision trees, this metric
does not make sense. Likewise, systems using dynamic vision sensors
process spike events, rather than frames63 and so frames per second is
not a useful metric. DTP is therefore platform agnostic and is applicable
for both training and inference. We define the DTP as:

DTP = Numberof bits
tinf

. (1)

The issue of dataset-dependent measures does not apply in this case,
as we intend our metrics be used to evaluate how a given accelerator
performs on a given computational problem compared with others,
that is, to evaluate like-for-like tasks.

Error efficiency
Many high-performance ANNs have over a million different parameters
and many layers. This corresponds to a high cost in time, resources
and energy consumption. By comparison, approaches based on novel
materials and devices, such as RRAM crossbars, use substantially fewer
resources; however, they generally have lower accuracies. Ideally, the

higher the accuracy the better, but the time and power costs can offset
the advantages of accuracy. For example, a facial recognition algorithm
that unlocks a mobile phone only when it is 99.98% certain the right face
has been scanned is not much good if it takes several minutes to run
and severely depletes the battery. However, an ML algorithm used for
medical diagnosis should be as accurate as possible. We suggest that
the error efficiency (EE), which relates the wasted power (the prod-
uct of the error on a given task and the power for a single inference)
to the total system power, that is, the overall power consumption of
the accelerator, is a useful metric to evaluate devices. For example,
in low-power environments, such as edge applications, larger CMOS
feature sizes are used due to their lower leakage currents. However,
these have larger switching energies than smaller processes, and so
the energy for a single inference may be larger. Thus, the wasted power
may be a larger proportion of the total system power. If a novel device
was instead used, with much smaller power draw per inference but
lower accuracy, then a lower accuracy may be compensated for by the
improved energy efficiency. We define the EE as follows:

EE =
Error × Einf

tinf

TSP . (2)

Device error efficiency
Following from our proposal for EE as a metric, we propose a similar
metric for the device count: device error efficiency (DEE). In effect,
DEE looks at the proportion of wasted devices for a given inference
operation. This relates the error per inference to the device density,
and is equal to the product of the error and the density of devices (that
is, the number of devices in a given die area), and so also encapsulates
process geometry. To account for accelerators that use 3D integration
to improve device density, we multiply the device density by the number
of layers. For non-3D systems, this value is one. In a system where mate-
rial constraints are an issue, one may wish to trade accuracy for a lower
device count. For example, a system with a low error but many devices
may be less efficient per device than a system with a lower accuracy but
far fewer devices, and so the latter may be more useful in material- or
geometry-constrained environments. We thus define DEE as:

DEE = Error × Numberof layers × Numberof devices
A

(3)

Evaluation using metrics
As a demonstration of how our metrics can facilitate comparisons
between different hardware accelerators, we present a comparison of
several hardware accelerators from Fig. 2b. Figure 3c shows the data
we use to calculate the figures of merit for the radar plot in Fig. 3b. We
selected these to account for both different hardware implementa-
tions, for example, digital CMOS versus non-volatile memory, and
different ML methods, for example, SNNs versus CNNs. As the data
show, despite TrueNorth having the highest accuracy and device count,
other approaches have a higher throughput. The metal–oxide resistive
random-access memory (OxRAM)-based accelerator has the highest
throughput, although it also has the largest DTP and better accuracy
than the 3D-integrated memristor accelerator35, its higher power con-
sumption and lower device density means it is less competitive in EE
and DEE. Owing to the greater device density enabled by 3D integra-
tion, the 3D-integrated memristor accelerator surpasses the others in
DEE, despite the lowest reported accuracy. TrueNorth excels in error
efficiency, with a very small amount of wasted energy compared with
alternative approaches. These examples thus illustrate the value of
our metrics, as simple measures of device count, power consump-
tion and accuracy do not necessarily mean a given solution is best
in this respect. Particularly in the DTP, we see that the 3D-integrated

http://www.nature.com/natureelectronics

Nature Electronics | Volume 6 | July 2023 | 479–490 487

Perspective https://doi.org/10.1038/s41928-023-00977-1

memristor accelerator35 is only a single order of magnitude faster than
the standard memristor accelerator64, despite the reported number
of operations per second (OPS) being much larger (1,460.7 TOPS s−1
versus 81.92 GOPS s−1).

The example above also illustrates the value of considering a given
device or circuit as a solution to a computational problem. Consider our
definition of a computational problem in Box 1. In this instance, we have
as an input a set of images showing handwritten digits and our outputs
are a set of numbers from zero to nine. The hardware accelerator is,
in this case, a solution to this problem, transforming the input into a
desired output. Our metrics thus illustrate how different solutions to
the same problem perform better or worse, depending on the target
use-case. For low-power applications, we see that an approach such
as TrueNorth performs the best, whereas for pure throughput, the
OxRAM-based accelerator performs best. By considering the metrics
and parameters we propose, we suggest that novel devices, materials
and circuits can be better applied as solutions to computational prob-
lems. One analysis of ML workloads discusses the necessary trade-off
between energy consumption and processing time30, particularly for
in-memory approaches. Thus the ‘best’ performance is context specific.

Applications
Given the relatively poor performance of devices and systems based on
novel materials when compared with conventional CMOS, application
domains where the disadvantages become irrelevant or are minimal
are of interest. Below, we suggest some example domains and device/
materials requirements for these areas.

Disposable electronics
A growing area of interest is disposable electronics. These are circuits
that are designed to be used a limited number of times before being
thrown out. Examples may include medical sensors or packaging. Given
their inherent limited lifespans, such circuits would not need high
endurance and would also need to be very low cost. Thus, CMOS pro-
cesses may be prohibitively expensive or unsuitable for such applica-
tions. There is also a large potential overlap with printed electronics in
this domain and so the rigidity of CMOS devices may also be an issue. In
this area, devices based on materials such as two-dimensional materi-
als or polymers65 would be ideal, due to their ease of manufacture and
flexibility. Furthermore, their disposable nature means that the low
cycle endurance of such devices would not be an issue.

Space electronics
The space sector has grown rapidly in recent years, with the number of
scientific and commercial launches growing since 200466. Given the
usefulness of ML and hardware acceleration, it is clear that there is scope
for ML hardware accelerators in the space sector. Such applications can
be considered computing at the extreme edge; space probes, rovers and
satellites operate on very low power, with very limited bandwidth for
data transmission. Thus, pre-processing of gathered data, for example,
via some edge ML application, may have a large impact on the informa-
tion gained from such missions. However, space electronics have very
specific requirements. In addition to low-power operation, the large
amounts of radiation both in space places unique demands on circuits,
in particular, their need for radiation hardness. Some work already exists
exploring the radiation hardness of RRAMs67,68 and a design flow for
rad-hard non-volatile memories already exists69. For ML inference accel-
erators for space applications, materials and devices with a robustness
to radiation would be essential. As space missions are often produced
only once, scalable fabrication would also be less of an issue.

Biocompatible electronics
Medical implants are a growing field of research and industry and such
devices also have specific requirements, biocompatibility being par-
ticularly important. For example some neural implant that interfaces

with neurons to predict seizures would need to both operate on very
low power and be biocompatible. Some examples of experiments study-
ing biocompatibility on flexible electronics already exist70, but further
work would be of interest.

Quantum electronics
Quantum computing is a burgeoning field with a number of potential
applications and quantum ML is a growing field of research. Many quan-
tum computers operate at very low temperatures to minimize decoher-
ence and reduce errors. Non-volatile memories may have utility here,
and some work on quantum memristors already exists71,72. Given such
devices would probably interface with quantum hardware, they would
need to perform at low temperatures and so temperature-dependent
measurements, as well as experiments to explore the amount of noise
in different devices would be of interest.

Recurrent networks
Recurrent neural networks (RNNs) are another avenue where the met-
rics for a good device may be different. RNNs are a type of ANN that have
a time dependence, making them suited to tasks using time series data,
such as natural language processing73. RNNs use previous outputs as
inputs, that is, the activation at a given time is a function of the activa-
tion at a previous time. Such networks may not require as many layers
and so smaller arrays of devices may be suitable. However, given that
RNNs may operate on many time steps, a high cycle endurance would be
necessary. Reservoir computing is an ML approach that builds on sev-
eral RNN models. The reservoir part of a reservoir computer is treated
as a black box, but has two requirements: it must be made up of indi-
vidual nonlinear units and be able to store information74. A reservoir
computer uses the reservoir to map inputs into a higher-dimensional
computing space and then conducts pattern analysis in a readout sec-
tion. Unlike other ANN approaches, a reservoir computer does not
train the weights of the input or reservoir sections, only the readout.
This theoretically means a simplified and faster training process, as
simple training algorithms, such as linear regression, can be used, with
a focus on reduced computational cost compared with alternative
approaches75. As with accelerators for other ML approaches, reservoir
computers have been realized using different devices and materials,
including a photonics-based approach76, or even a literal reservoir in
the form of a water tank77.

Table 4 | The 13 computational dwarfs identified by
University of California, Berkeley researchers and their
corresponding applications in ML

Dwarf ML application

Dense linear algebra SVMs, PCA, ICA

Sparse linear algebra SVMs, PCA, ICA

Spectral methods Spectral clustering

N-body methods –

Structured grids –

Unstructured grids Belief propagation

MapReduce Expectation maximization

Combinational logic Hashing

Graph traversal Bayesian networks, decision trees, natural
language processing

Dynamic programming Forwards–backwards, inside–outside,
variable elimination, value iteration

Back-track and
branch-and-bound

Kernel regression, constraint satisfaction,
satisfiability

Graphical models Hidden Markov models

Finite state machine –

http://www.nature.com/natureelectronics

Nature Electronics | Volume 6 | July 2023 | 479–490 488

Perspective https://doi.org/10.1038/s41928-023-00977-1

Outlook
In 2006, researchers at University of California, Berkeley met to discuss
and make predictions for the transition towards parallel computing78.
They described 13 ‘dwarfs’: algorithmic methods that describe patterns
of data communication and computation. Not all the dwarfs are appli-
cable to ML, and there is some overlap in applications (dense and sparse
linear algebra both have utility for SVMs, principal component analysis
(PCA) and independent components analysis (ICA), for example). These
dwarfs pose an additional consideration. Conventional wisdom may
suggest that increased parallelization always improves computation
efficiency. However, one must also consider the movement of data
itself, and the complexity of a given computation. The classification
also accounts for ML applications. Table 4 lists the 13 dwarfs and their
corresponding applications in ML.

Fundamentally, most ML applications are collections of more
general computational problems. The properties of novel devices
and materials may have the potential to perform these computations
in different and more efficient ways than existing algorithms. If we
consider the fundamental ML computations in isolation, ignoring
the minutiae of a given ML application, we may find that novel devices
have wider potential applications than simply implementing a given
ML model. If we consider the fact that non-volatile memory crossbars
implement MVM, rather than a neural network, we see that they also
have utility as linear algebra accelerators, giving them application to
the first two dwarfs.

Modern ML implementations in fixed-function hardware typi-
cally make use of the bfloat16 format, as it allows for fast conversion
to 32-bit floating-point formats while reducing ML algorithm storage
requirements and computation time. For a 7 nm process, bfloat16
offers a 1.5-times reduction in energy consumption compared with a
conventional Institute of Electrical and Electronics Engineers 16-bit
float format27. We thus propose that this be a common standard of
precision used for ML systems.

We previously discussed the different understandings of the term
‘computer architecture’ between communities, and how a simple MVM
circuit is not a computer architecture, but rather a hardware imple-
mentation of an algorithm. These different understandings of the term
hamper collaboration, and greater precision is required, as not all ML
accelerators are fully fledged computer architectures.

Intel’s Loihi9 is an example of an accelerator that can be considered
a computer architecture in the strict definition of the term. Loihi’s
instruction set features common operations such as bitwise operations,
comparisons (for example, less than, not equal), and basic arithmetic
operations, but also includes specific instructions for spiking neural
networks (SPIKE and PROBE). The former generates a spike and the
latter sends probe data to a processor. This is another key point for
early-stage collaboration between device physicists and computer
architects: the development of new instruction sets. For their incor-
poration into CPU architectures, accelerators such as in-memory
units will need corresponding instruction sets. Although the specific
implementation may vary (for example, MRAM, RRAM and so on), a
standardized instruction set means that a given implementation can
account for these accelerators.

A final suggestion we propose is the standardized report-
ing of the computational cost in devices articles. This will not only
help researchers consider the scalability and viability of their own
research but also help readers and those who build on their work to
better direct subsequent investigations. Returning to the example of
non-volatile-memory-based MVM operations, we can see that chang-
ing the architecture reduces the time complexity of the operation, but,
more importantly, this does not smuggle the complexity elsewhere:
the resource complexity grows linearly with input size.

For ML approaches, whether based on digital logic implemented
in CMOS, or on digital- or analogue-domain computation using novel
materials and devices, the understanding that any ML algorithm has

three components makes this easy to calculate, as the complexity of the
system or algorithm will be whichever term in the learning equals repre-
sentation plus evaluation plus optimization equation grows the fastest.

Many review articles in the device literature discuss emerging
technologies and their principles of operation, but ultimately end
with the message that useful implementations are a distant prospect
due to engineering challenges and issues with scalability compared
with current CMOS devices. We instead suggest that emerging tech-
nologies may be better applied and commercialized if researchers
shift their focus to the direct mapping of computational problems to
the unique properties of new devices to achieve better performance
in a given application than conventional digital CMOS devices using
the above metrics.

Data availability
All relevant data are included in the paper and/or its Supplementary
Information files.

References
1.	 Rumble, J. & Bruno, T. CRC Handbook of Chemistry and Physics

2019-2020: A Ready-reference Book of Chemical and Physical Data
CRC Handbook of Chemistry and Physics (Taylor & Francis
Group, 2019).

2.	 Moskowitz, S. Advanced Materials Innovation: Managing Global
Technology in the 21st century (Wiley, 2016).

3.	 Keyes, R. W. What makes a good computer device? Science 230,
138–144 (1985).

4.	 Mehonic, A. & Kenyon, A. J. Brain-inspired computing needs a
master plan. Nature 604, 255–260 (2022).

5.	 Abu-Mostafa, Y. S., Magdon-Ismail, M. & Lin, H.-T. Learning From
Data (AMLBook, 2012).

6.	 Domingos, P. A few useful things to know about machine learning.
Commun. ACM 55, 78–87 (2012).

7.	 Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning
(MIT Press, 2016).

8.	 Merolla, P. A. et al. A million spiking-neuron integrated circuit with
a scalable communication network and interface. Science 345,
668–673 (2014).

9.	 Davies, M. et al. Loihi: a neuromorphic manycore processor with
on-chip learning. IEEE Micro 38, 82–99 (2018).

10.	 Pei, J. et al. Towards artificial general intelligence with hybrid
tianjic chip architecture. Nature 572, 106–111 (2019).

11.	 Painkras, E. et al. SpiNNaker: a 1-W 18-core system-on-chip for
massively-parallel neural network simulation. IEEE J. Solid State
Circuits 48, 1943–1953 (2013).

12.	 McCulloch, W. S. & Pitts, W. A logical calculus of the
ideas immanent in nervous activity. Bull. Math. Biophys. 5,
115–133 (1943).

13.	 Hodgkin, A. L. & Huxley, A. F. A quantitative description of
membrane current and its application to conduction and
excitation in nerve. J. Physiol. 117, 500–544 (1952).

14.	 Ermentrout, G. B. & Kopell, N. Parabolic bursting in an excitable
system coupled with a slow oscillation. SIAM J. Appl. Math. 46,
233–253 (1986).

15.	 Jolivet, R., Rauch, A., Lüscher, H.-R. & Gerstner, W. Predicting
spike timing of neocortical pyramidal neurons by simple
threshold models. J. Comput. Neurosci. 21, 35–49 (2006).

16.	 Galves, A. & Löcherbach, E. Infinite systems of interacting
chains with memory of variable length—a stochastic model for
biological neural nets. J. Stat. Phys. 151, 896–921 (2013).

17.	 Schuman, C. D. et al. Opportunities for neuromorphic computing
algorithms and applications. Nat. Comput. Sci. 2, 10–19 (2022).

18.	 Smith, J. D. et al. Neuromorphic scaling advantages for
energy-efficient random walk computations. Nat. Electron. 5,
102–112 (2022).

http://www.nature.com/natureelectronics

Nature Electronics | Volume 6 | July 2023 | 479–490 489

Perspective https://doi.org/10.1038/s41928-023-00977-1

19.	 Zhang, H.-T. et al. Reconfigurable perovskite nickelate electronics
for artificial intelligence. Science 375, 533–539 (2022).

20.	 Brent, R. P. Multiple-precision Zero-finding Methods and the
Complexity of Elementary Function Evaluation 151–176 (Academic
Press, 1976).

21.	 Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning
applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).

22.	 Hiatt, W. R. & Hickmott, T. W. Bistable switching in niobium oxide
diodes. Appl. Phys. Lett. 6, 106–108 (1965).

23.	 Hu, M. et al. Memristor-based analog computation and neural
network classification with a dot product engine. Adv. Mater. 30,
1705914 (2018).

24.	 Li, C. et al. In-memory computing with memristor arrays. In 2018
IEEE International Memory Workshop 1–4 (IEEE, 2018).

25.	 Byerly, A., Kalganova, T. & Dear, I. No routing needed between
capsules. Neurocomputing 463, 545–553 (2921).

26.	 Reuther, A. et al. Survey and benchmarking of machine learning
accelerators. In IEEE High Performance Extreme Computing
Conference 1–9 (IEEE, 2019).

27.	 Norrie, T. et al. The design process for google’s training chips:
TPUv2 and TPUv3. IEEE Micro 41, 56–63 (2021).

28.	 Fuchs, A. & Wentzlaff, D. The accelerator wall: limits of chip
specialization. In IEEE International Symposium on High
Performance Computer Architecture 1–14 (IEEE, 2019).

29.	 Adolf, R., Rama, S., Reagen, B., Wei, G.-y. & Brooks, D. Fathom:
reference workloads for modern deep learning methods.
In IEEE International Symposium on Workload Characterization
1–10 (IEEE, 2016).

30.	 Liu, J., Zhao, H., Ogleari, M. A., Li, D. & Zhao, J. Processing-in-
memory for energy-efficient neural network training:
a heterogeneous approach. In 51st Annual IEEE/ACM International
Symposium on Microarchitecture 655–668 (IEEE, 2018).

31.	 Reddy, M. in API Design for C++ (ed. Reddy, M.) 209–240
(Morgan Kaufmann, 2011).

32.	 Sarpeshkar, R. Analog versus digital: extrapolating from
electronics to neurobiology. Neural Comput. 10, 1601–1638 (1998).

33.	 Hu, M., Strachan, J. P., Li, Z. & Stanley-Williams, R. Dot-product
engine as computing memory to accelerate machine learning
algorithms. In 17th International Symposium on Quality Electronic
Design 374–379 (IEEE, 2016).

34.	 Garbin, D. et al. Variability-tolerant convolutional neural network
for pattern recognition applications based on oxram synapses.
In IEEE International Electron Devices Meeting 28.4.1–28.4.4
(IEEE, 2014).

35.	 Lin, P. et al. Three-dimensional memristor circuits as complex
neural networks. Nat. Electron. 3, 225–232 (2020).

36.	 Chen, J.-H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic
and extrinsic performance limits of graphene devices on SiO2.
Nat. Nanotechnol. 3, 206–209 (2008).

37.	 Querlioz, D., Bichler, O. & Gamrat, C. Simulation of a memristor-
based spiking neural network immune to device variations.
In 2011 International Joint Conference on Neural Networks 1775–1781
(IEEE, 2011).

38.	 Payvand, M., Nair, M. V., Müller, L. K. & Indiveri, G. A neuromorphic
systems approach to in-memory computing with non-ideal
memristive devices: from mitigation to exploitation. Faraday
Discuss. 213, 487–510 (2019).

39.	 Moro, F. et al. Neuromorphic object localization using resistive
memories and ultrasonic transducers. Nat. Commun. 13,
3506 (2022).

40.	 Li, Y., Wang, Z., Midya, R., Xia, Q. & Yang, J. J. Review of memristor
devices in neuromorphic computing: materials sciences and
device challenges. J. Phys. D 51, 503002 (2018).

41.	 Wang, Y. et al. Mott-transition-based RRAM. Mater. Today 28,
63–80 (2019).

42.	 Wang, H. & Yan, X. Overview of resistive random access
memory (RRAM): materials, filament mechanisms, performance
optimization, and prospects. Phys. Status Solidi Rapid Res. Lett.
13, 1900073 (2019).

43.	 Akerman, J. Toward a universal memory. Science 308,
508–510 (2005).

44.	 Palem, K. V. Energy aware computing through probabilistic
switching: a study of limits. IEEE Trans. Comput. 54,
1123–1137 (2005).

45.	 Camsari, K. Y., Faria, R., Sutton, B. M. & Datta, S. Stochastic p-bits
for invertible logic. Phys. Rev. X 7, 031014 (2017).

46.	 Camsari, K. Y., Sutton, B. M. & Datta, S. p-bits for probabilistic spin
logic. Appl. Phys. Rev. 6, 011305 (2019).

47.	 Borders, W. A. et al. Integer factorization using stochastic
magnetic tunnel junctions. Nature 573, 390–393 (2019).

48.	 Khasanvis, S. et al. Self-similar magneto-electric nanocircuit
technology for probabilistic inference engines. IEEE Trans.
Nanotechnol. 14, 980–991 (2015).

49.	 Kim, J. et al. Exploitable magnetic anisotropy of the
two-dimensional magnet CrI3. Nano Lett. 20, 929–935 (2020).

50.	 Chen, Z., He, J., Zhou, P., Na, J. & Sun, L. Strain control of the
electronic structures, magnetic states, and magnetic anisotropy
of Fe doped single-layer MoS2. Comput. Mater. Sci. 110,
102–108 (2015).

51.	 Mizrahi, A. et al. Neural-like computing with populations of
superparamagnetic basis functions. Nat. Commun. 9, 1533 (2018).

52.	 Bhuin, S., Sweeney, J., Pagliarini, S., Biswas, A. K. & Pileggi, L.
A self-calibrating sense amplifier for a true random number
generator using hybrid FinFET-straintronic MTJ. In 2017 IEEE/
ACM International Symposium on Nanoscale Architectures
147–152 (IEEE, 2017).

53.	 Bhuin, S., Biswas, A. K. & Pileggi, L. Strained MTJs with latch-based
sensing for stochastic computing. In IEEE 17th International
Conference on Nanotechnology 1027–1030 (IEEE, 2017).

54.	 Pagliarini, S. N., Bhuin, S., Isgenc, M. M., Biswas, A. K. &
Pileggi, L. A probabilistic synapse with strained MTJs for
spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst. 31,
1113–1123 (2020).

55.	 McDowell, D. L. et al. in Integrated Design of Multiscale,
Multifunctional Materials and Products (eds McDowell, D. L. et al.)
351–360 (Butterworth-Heinemann, 2010).

56.	 Kaspar, C., Ravoo, B. J., van der Wiel, W. G., Wegner, S. V. &
Pernice, W. H. P. The rise of intelligent matter. Nature 594,
345–355 (2021).

57.	 Goswami, S. et al. Decision trees within a molecular memristor.
Nature 597, 51–56 (2021).

58.	 Zadeh, A. H., Poulos, Z. & Moshovos, A. Deep learning language
modeling workloads: where time goes on graphics processors.
In IEEE International Symposium on Workload Characterization
131–142 (IEEE, 2019).

59.	 Oh, S. et al. Energy-efficient Mott activation neuron for full-
hardware implementation of neural networks. Nat. Nanotechnol.
https://doi.org/10.1038/s41565-021-00874-8 (2021).

60.	 Surekcigil Pesch, I., Bestelink, E., de Sagazan, O., Mehonic, A. &
Sporea, R. A. Multimodal transistors as ReLU activation functions
in physical neural network classifiers. Sci. Rep. 12, 670 (2022).

61.	 Mennel, L. et al. Ultrafast machine vision with 2D material neural
network image sensors. Nature 579, 62–66 (2020).

62.	 Yu, S., Jiang, H., Huang, S., Peng, X. & Lu, A. Compute-in-
memory chips for deep learning: recent trends and prospects.
IEEE Circuits Syst. Mag. 21, 31–56 (2021).

63.	 Gallego, G. et al. Event-based vision: a survey. IEEE Trans. Pattern
Anal. Mach. Intell. 44, 154–180 (2022).

64.	 Yao, P. et al. Fully hardware-implemented memristor
convolutional neural network. Nature 577, 641–646 (2020).

http://www.nature.com/natureelectronics
https://doi.org/10.1038/s41565-021-00874-8

Nature Electronics | Volume 6 | July 2023 | 479–490 490

Perspective https://doi.org/10.1038/s41928-023-00977-1

65.	 Chen, Y. et al. Polymer memristor for information storage and
neuromorphic applications. Mater. Horiz. 1, 489–506 (2014).

66.	 Salas, E. B. Number of satellites launched from 1957 to 2019.
Statista https://www.statista.com/statistics/896699/number-of-
satellites-launched-by-year/#statisticContainer (2022).

67.	 Tan, F. et al. Investigation on the response of TaOx-based resistive
random-access memories to heavy-ion irradiation. IEEE Trans.
Nucl. Sci. 60, 4520–4525 (2013).

68.	 Gao, L., Holbert, K. E. & Yu, S. Total ionizing dose effects of
gamma-ray radiation on nbox-based selector devices for crossbar
array memory. IEEE Trans. Nucl. Sci. 64, 1535–1539 (2017).

69.	 Lupo, N., Calligaro, C., Gastaldi, R., Wenger, C. & Maloberti, F.
Design of resistive non-volatile memories for rad-hard
applications. In IEEE International Symposium on Circuits and
Systems 1594–1597 (IEEE, 2016).

70.	 Park, G. et al. Immunologic and tissue biocompatibility of flexible/
stretchable electronics and optoelectronics. Adv. Healthc. Mater.
3, 515–525 (2014).

71.	 Salmilehto, J., Deppe, F., Di Ventra, M., Sanz, M. & Solano, E.
Quantum memristors with superconducting circuits. Sci. Rep. 7,
42044 (2017).

72.	 Spagnolo, M. et al. Experimental photonic quantum memristor.
Nat. Photon. https://doi.org/10.1038/s41566-022-00973-5 (2022).

73.	 Li, X. & Wu, X. Constructing long short-term memory based
deep recurrent neural networks for large vocabulary speech
recognition. In IEEE International Conference on Acoustics,
Speech and Signal Processing 4520–4524 (IEEE, 2015).

74.	 Soriano, M. C. Reservoir computing speeds up. Physics
https://doi.org/10.1103/physics.10.12 (2017).

75.	 Tanaka, G. et al. Recent advances in physical reservoir computing:
a review. Neural Netw. 115, 100 – 123 (2019).

76.	 Larger, L. et al. High-speed photonic reservoir computing using
a time-delay-based architecture: million words per second
classification. Phys. Rev. X 7, 011015 (2017).

77.	 Fernando, C. & Sojakka, S. in Advances in Artificial Life: ECAL 2003
Lecture Notes in Computer Science Vol. 2801 (eds Banzhaf, W.
et al.) 588–597 (Springer, 2003); https://doi.org/10.1007/978-3-
540-39432-7_63

78.	 Asanovic, K. et al. The Landscape Of Parallel Computing Research:
A View From Berkeley Technical Report UCB/EECS-2006-183
(EECS Department, Univ. California, Berkeley, 2006); http://www2.
eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

79.	 Jongerius, R., Stanley-Marbell, P. & Corporaal, H. Quantifying the
common computational problems in contemporary applications.
In IEEE International Symposium on Workload Characterization
74–74 (IEEE, 2011).

80.	 Tsai, H., Ambrogio, S., Narayanan, P., Shelby, R. M. & Burr, G. W.
Recent progress in analog memory-based accelerators for deep
learning. J. Phys. D 51, 283001 (2018).

Acknowledgements
P.S.-M. is supported by EPSRC grant EP/V047507/1 and by the
UKRI Materials Made Smarter Research Centre (EPSRC grant EP/
V061798/1). N.J.T. acknowledges funding from EPSRC grant EP/
L016087/1. S.H. acknowledges funding from EPSRC (EP/P005152/1,
EP/P007767/1). We thank J. Crowcroft, S. Tappertzhofen and H.
Joyce for their comments and feedback on the paper. Lastly, we
acknowledge the contributions of J. Meech and J. Rodowicz in
compiling the data in Supplementary Fig. 5.

Author contributions
P.S.-M. conceived the idea. N.J.T. wrote the paper, collected data and
performed analysis under the guidance of S.H. and P.S.-M.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s41928-023-00977-1.

Correspondence should be addressed to Phillip Stanley-Marbell.

Peer review information Nature Electronics thanks Kerem Camsari,
Sreetosh Goswami, Melika Payvand and the other, anonymous,
reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional
affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with
the author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.

© Springer Nature Limited 2023

http://www.nature.com/natureelectronics
https://www.statista.com/statistics/896699/number-of-satellites-launched-by-year/#statisticContainer
https://www.statista.com/statistics/896699/number-of-satellites-launched-by-year/#statisticContainer
https://doi.org/10.1038/s41566-022-00973-5
https://doi.org/10.1103/physics.10.12
https://doi.org/10.1103/physics.10.12
https://doi.org/10.1007/978-3-540-39432-7_63
https://doi.org/10.1007/978-3-540-39432-7_63
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
https://doi.org/10.1038/s41928-023-00977-1
http://www.nature.com/reprints

	Materials and devices as solutions to computational problems in machine learning

	Definitions

	Computer architectures

	ML accelerators

	Points of disconnect

	ML hardware versus software

	The decline of CMOS

	In-memory architectures

	ML workloads and Amdahl’s law

	Novel devices as alternatives to digital silicon electronics

	Non-volatile memories for MVM

	Magnetic tunnel junctions for stochastic computing

	Resistive memories for reconfigurable logic

	Metrics

	Data throughput

	Error efficiency

	Device error efficiency

	Evaluation using metrics

	Applications

	Disposable electronics

	Space electronics

	Biocompatible electronics

	Quantum electronics

	Recurrent networks

	Outlook

	Acknowledgements

	Fig. 1 Development process for an integrated circuit from the perspective of a computer architecture and a device physicist.
	Fig. 2 Hardware solutions to computational problems.
	Fig. 3 Metrics for evaluating a given solution to an ML task.
	Table 1 The three components of machine learning methods.
	Table 2 Dominant TensorFlow operation categories in contemporary ML workloads.
	Table 3 Common activation functions and associated (worst case) complexities for ANNs.
	Table 4 The 13 computational dwarfs identified by University of California, Berkeley researchers and their corresponding applications in ML.

