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Materials and devices as solutions to 
computational problems in machine 
learning
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The growth of machine learning, combined with the approaching limits 
of conventional digital computing, are driving a search for alternative and 
complementary forms of computation, but few novel devices have been 
adopted by mainstream computing systems. The development of such 
computer technology requires advances in both computational devices 
and computer architectures. However, a disconnect exists between the 
device community and the computer architecture community, which limits 
progress. Here we explore this disconnect with a focus on machine learning 
hardware accelerators. We argue that the direct mapping of computational 
problems to materials and device properties provides a powerful route 
forwards. We examine novel materials and devices that have been 
successfully applied as solutions to computational problems: non-volatile 
memories for matrix-vector multiplication, magnetic tunnel junctions for 
stochastic computing and resistive memory for reconfigurable logic. We 
also propose metrics to facilitate comparisons between different solutions 
to machine learning tasks and highlight applications where novel materials 
and devices could potentially be of use.

For over 50 years, silicon has been the dominant material in computing 
devices. The success of silicon and silicon-based metal–oxide–semi-
conductor field-effect transistors (MOSFETs) in particular is due to a 
number of attributes: stable oxide formation (silicon forms a stable 
native oxide layer); abundance (silicon is the second most abundant ele-
ment in Earth’s crust1); miniaturization and mass production (MOSFETs 
can be miniaturized and mass-produced2); and power efficiency (com-
plementary metal–oxide–semiconductor (CMOS) technology com-
bines n-type and p-type MOSFETs into a single device that consumes 
power only when the device switches). The resulting digital computing 
devices must then have a number of general features3: gain (high gain 
in each component reduces issues arising from interdevice variation 
by using reference signal levels throughout a system to prevent signal 
degradation); input and output isolation (inputs and outputs must be 
isolated from each another to ensure that calculations are carried out 
in a predetermined manner); comparable on and off switching times 

(the switching time between the on and off states must also be com-
parable, otherwise a separate reset operation is needed, adding time 
and material costs); and inversion (a computer device must be able to 
convert a one to a zero and vice versa).

The rise of new application classes, such as machine learning (ML) 
is pushing the limits of conventional digital computing. For instance, 
ML training compute demands have doubled every two months since 
20194. This has typically been addressed by using larger numbers of 
processors such as graphics processing units (GPUs). However, this 
is an inefficient and unsustainable approach. As a result, there is an 
active search for alternative and complementary forms of computa-
tion. But despite considerable research effort, few novel devices have 
been adopted in mainstream computing systems.

ML is an approach to computation in which the computational 
process is learned from data. A dataset with one or more features 
(variables) has an associated output. ML is the attempt to discover 
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opportunities for neuromorphic algorithms, namely, those that use 
spiking neural networks (SNNs)17. These opportunities fall into two 
broad categories of algorithmic approaches: those for ML applications 
and those for non-ML applications. In each case, the algorithms use 
an SNN, but ML applications require a training process whereas the 
non-ML applications use a hand-constructed SNN. The structure of 
an SNN is a directed graph and so these hardware SNNs can accelerate 
computations for graphs.

Neuromorphic hardware can also perform random-walk com-
putations, with discrete-time Markov chains implemented on Intel’s 
Loihi and IBM’s TrueNorth platforms18. In addition, the development 
of perovskite-based devices that can be reconfigured to function as 
neurons, synapses, resistors or capacitors may prove to be particularly 
useful19; neurons and synapses are key components of hardware SNNs, 
and being able to selectively configure circuit elements to implement a 
specific algorithm or ML architecture could have considerable impact.

Points of disconnect
We identify disconnections between the device community and the 
computer architecture community in four areas: ML hardware ver-
sus software; the decline of CMOS; in-memory architectures; and ML 
workloads and Amdahl’s law.

ML hardware versus software
The Modified National Institute of Standards and Technology (MNIST) 
optical character recognition task21 is a common benchmark in ML and 
involves classification of handwritten digits between zero and nine. 
The MNIST dataset consists of 60,000 training examples and 10,000 
test examples of handwritten digits, where each example is a 28 × 28 
pixel greyscale image. Figure 2c shows the accuracies of several digital 
and silicon CMOS-based accelerators and approaches based on novel 
materials and devices against a given year. (Supplementary Tables 1 
and 2 provide the data in this figure.)

The low accuracy for approaches based on novel materials and 
devices when compared with those based on digital silicon- and 
CMOS-based hardware (including software-programmable proces-
sors and GPUs), or fixed-function application-specific integrated 
circuits (ASICs) and other accelerators, is immediately apparent. 
ASIC accuracies lag software approaches by about 10 years, despite 
ASICs being a mature technology. ASIC and programmable hardware 
approaches both show a trend of progress, becoming more accurate 
over time. This, however, is not true for approaches based on resistive 
random-access memories (RRAMs) or other experimental devices. 
The ‘other’ approaches category is not a unified technology, but rather 
a range of different implementations. Thus a comparison is of lim-
ited value. These are included here instead to indicate the accuracies 
reported for approaches outside the most popular ones.

the mathematical function that depends on these features and most 
accurately predicts the output. There are three key elements in ML 
methods: representation, evaluation and optimization5–7. In short, 
representations are the ML model, evaluations are a cost function or 
error metric, and optimizations are a method to determine the best 
representation.

ML methods and ML algorithms are not the same thing. For exam-
ple, an ML implementation that uses a neural network as its represen-
tation, mean squared error as its evaluation and greedy search as its 
optimization will be made up of several algorithms (see Table 1 for 
examples). Most ML hardware accelerators focus on representations. 
For example, using novel devices to represent artificial neural network 
(ANN) neurons. However, other components of an ML algorithm could 
be accelerated as well. (See Supplementary Section 1 for a more detailed 
overview of ML, and Supplementary Section 2 for an overview of hard-
ware accelerators for different ML representations.)

The development of computer technology for ML requires 
advances in both computational devices and computer architectures. 
However, a disconnect exists between the device community and the 
computer architecture community that poses a considerable hurdle 
to progress. In this Perspective, we explore the disconnect between 
communities with a focus on ML hardware accelerators. We argue 
that the direct mapping of computational problems to materials and 
device properties provides a route forwards (Fig. 1) and we examine 
novel materials and devices that have been successfully applied as 
solutions to computational problems (non-volatile memories for 
matrix-vector multiplication (MVM), magnetic tunnel junctions for 
stochastic computing and resistive memory for reconfigurable logic). 
We then propose metrics to facilitate comparisons between different 
solutions to ML tasks and highlight applications where novel devices 
and materials could potentially be of use.

ML accelerators
Many ML accelerators are described as neuromorphic, as their design 
is influenced, in part, by biological systems. However, the term neuro-
morphic is not well defined. For example, a hardware realization of a 
deep neural network (DNN) using logic gates to perform MVM might 
be referred to as a neuromorphic system, despite possessing no real 
resemblance to the brain. However, a system with artificial neurons and 
synapses might be referred to as neuromorphic. These systems include 
IBM’s TrueNorth8 (which features neurons and synapses), Intel’s Loihi9 
(which features synapses, dendrites and axons) and Tianjic10 (which 
features axons, synapses, dendrites and somas).

Attempts to simulate the brain, such as SpiNNaker11, may also be 
considered neuromorphic, although SpiNNaker uses large arrays of 
processors, corresponding to a much larger area and energy consump-
tion than the brain. Currently, the density of neurons and synapses 
in the brain far exceeds that of electronics technology, but suitable 
applications of materials and devices may close this gap. Our current 
understanding of the brain and animal nervous systems is also relatively 
limited, and much of the modern device literature relies on the neural 
network model of McCulloch and Pitts12, and the Hodgkin–Huxley 
model of spiking neurons13. Although these have proven to be success-
ful for neural networks, there are a number of more recent and more 
accurate neuron models14–16.

We suggest that ‘neuromorphic’ be used exclusively to refer to 
systems that emulate biological components, rather than a general 
term for ML accelerators. We also suggest that neuromorphic hardware 
be categorized into two broad domains: systems that draw inspiration 
from biology and perform computations (such TrueNorth, Loihi and 
Tianjic), which are termed bio-inspired; and systems that simulate the 
brain (such as SpiNNaker), which are termed bio-mimetic. Such a dis-
tinction allows for a clearer understanding of a given system’s purpose.

Neuromorphic accelerators provide a good example of 
inter-domain collaboration. For example, recent work highlights the 

Table 1 | The three components of machine learning methods

Representation Evaluation Optimization

Instances
 k-nearest neighbour
 Support vector 
machines

Error rate
Combinatorial
 Greedy search
 Beam search
 Branch-and-bound

Precision and recall

Hyperplanes
 Naive Bayes
 Logistic regression

Squared error

Likelihood
Continuous
Gradient descent
Quasi-Newton 
methods
Conjugate gradient
Linear programming
Quadratic 
programming

Decision trees Posterior probability

Neural networks Information gain

Graphical models
 Bayesian networks
 Conditional random 
fields

Kullback–Liebler divergence

Cost/utility

Margin

Information adapted from ref. 6.
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Although early work with RRAM dates back to 196522, progress 
was slow for several decades owing to the success of charge-storage 
memories. Thus, it is a relatively youthful technology compared with 
CMOS, fixed-function accelerators and software. Despite a renewed 
research interest in the past decade, there is no clear trend of increasing 
accuracy over time. The scarcity of full-scale physical realizations of 
such systems is a noted issue23,24, but remains an important step. These 
systems are difficult engineering challenges, and would benefit from 
research collaboration at each level of abstraction. As well as scalable 
fabrication developments for existing devices, research into novel 
devices where large-scale manufacturing is not necessary could also 
enable more immediate application of novel technologies.

It is not uncommon in device research articles to see claims that 
experimental accuracies of 90%, for example, are comparable to a 
simulated hardware accuracy of 94%. Initially, this might appear rela-
tively close. However, when the difference between the best and the 
tenth-best digital approaches is only 0.09 percentage points, a 4.4 
percentage point difference is almost 50 times larger. Of course, the 
raw numbers do not tell the entire story. Leading digital approaches 
often have millions of parameters. One of the top algorithms at the 
time of writing has 1,514,187 trainable parameters25. In comparison, 
implementations based on novel materials and devices may have only 
hundreds and thus can be expected to not perform as well. This makes 
it clear that better metrics are required.

The decline of CMOS
A common notion in the device literature is the decline of CMOS, and 
articles often appear to treat CMOS circuits as synonymous with digital 
circuits and the von Neumann architecture. This is not the case. The 
von Neumann architecture is a model of computation, whereas CMOS 
is a fabrication process. Furthermore, many novel devices, includ-
ing RRAMs, can be fabricated using CMOS processes and some of the 
best-performing ML accelerators for MNIST, such as IBM’s TrueNorth8, 
use a CMOS process. This illustrates the importance of distinguishing 
between (digital) CMOS and the von Neumann architecture.

Many ML hardware accelerators exceed the performance of Tru-
eNorth26, including Google’s tensor processing unit (TPU)27, which is an 
accelerator for conventional ANNs and thus mainly accelerates linear 
algebra computations. There is, however, a strong trend of increas-
ing power consumption being associated with higher performance. 
CMOS remains the most successful technology for computing devices, 
regardless of the computer architecture they implement. Simply rec-
reating CMOS devices using novel materials, while maintaining the 
same fundamental way of doing computation, that is, keeping the 
same architecture, has limited impact28, as few match or better CMOS.

It is too early to say whether, under alternative computing 
approaches, CMOS technology will remain dominant and so it remains 
worthwhile to investigate different technologies. A hybrid approach, 
where new materials and devices are integrated into CMOS processes 
is one possible avenue. Alternatively, technologies such as probabil-
istic bits (p-bits), where the fundamental nature of the computation 
relies on completely different device and material properties, mean it 
is likely that CMOS will not be the best technology for all applications.

It is also important to note that model selection is equally impor-
tant. For digital approaches, the ML model is often the key research 
focus, whereas, in the device domain, the device is the research focus. 
ML accelerators based on novel devices and materials would probably 
see performance gains if they implement ML models that are specifi-
cally designed to harness their properties and structures.

In-memory architectures
Many novel computing devices and circuits are often referred to as 
in-memory computing. This is an idea that attempts to address the von 
Neumann bottleneck. This bottleneck is the limitation in computational 
throughput inherent to von Neumann computers due to the separation 
of memory and processing (in particular, the shared program and data 
memory bus), which means that, while fetching instructions, a von 
Neumann computer cannot fetch any data to perform computations. 
In-memory computing addresses this bottleneck by co-locating com-
putation and memory. Here the memory devices themselves perform 

Microarchitecture:

Definition of ALUs, buses, registers…

Register-transfer-level design:

Gates, flip-flops, adders…

Fabrication:

Process node, materials
(for example, gate oxides), packaging

Algorithm design, implementation and
compilation:

Computational problem specification:

Search, matrix operations, sorting…

Algorithm implemented in a suitable
programming language compiled to a

target ISA 

Material discovery:

Growth, characterization…

Device development:
Materials combinations, conduction

mechanisms…

Application search:

Matching device properties to a
computational problem, for example, integer

factorization, MVM...

Circuit integration:

Circuit topologies, device arrays…

Computer architectures Device physicsBridging the gap

Computer architectures:
Instruction set
development
Incorporation of novel
circuits into
microarchitecture
Compiler
development

Device physics:
Materials selection/
engineering
Device development
Integration with other
components, for example,
CMOS compatibility

Both:
Application context (for example, disposable electronics)
System constraints and desired performance metrics (energy per
operation, data throughput…)

Fig. 1 | Development process for an integrated circuit from the perspective 
of a computer architecture and a device physicist. For a computer architect, 
the process typically begins by identifying a specific computational problem79, 
an implementation of a specific algorithm and then a survey of existing 
technologies to arrive at a given implementation; in essence, a top-down 
approach. For a device physicist, the process begins with materials discovery, 

followed by device fabrication and then integration of devices into a larger 
circuit; a bottom-up approach, or a solution looking for a problem. The two 
processes currently intersect only at the end (fabrication and circuit integration). 
By intersecting earlier and by mapping computational problems to devices and 
materials, each step in each community can be brought together, creating more 
impactful research. ISA, instruction set architecture.
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computations and so computation can occur in parallel with instruction 
access. However, the von Neumann architecture is not necessarily the 
dominant computer architecture in modern machines: the (modified) 
Harvard architecture is (Boxes 1 and 2; see also Supplementary Section 3  
for an overview of computer architectures).

In practice, the majority of in-memory architectures are not com-
puter architectures in the same sense as a von Neumann or Harvard 
architecture. Rather, they are circuits that perform a specific function, 
such as MVM. This makes them more akin to the arithmetic logic unit 
(ALU) or floating-point unit (FPU) in a hardware microarchitecture. 

FPUs began as discrete components before being incorporated into 
conventional von Neumann or Harvard architectures, and the same may 
be true for in-memory approaches. Figure 2a illustrates how an MVM 
circuit could be incorporated into a complete computer architecture 
as a linear algebra unit. Because computer architectures require both 
program and data memory, the former to store instructions and the lat-
ter to store data, an in-memory architecture would still require circuitry 
for data input–output and storing and fetching instructions (Fig. 2b).

ML workloads and Amdahl’s law
Workload characterization is an important part in understanding the 
computational demands of a given task. A breakdown of the execu-
tion time of eight contemporary DNNs implemented in TensorFlow, 
a standard ML framework (Table 2) provides a useful example of 
this29. The study investigates eight DNNs for different tasks, includ-
ing sequence-to-sequence translation (text translation), end-to-end 
memory networks (natural language reasoning), deep speech (speech 
recognition), variational autoencoder (feature extraction, dimen-
sionality reduction), residual networks (meta-learning), VGG-19 
(computer vision), AlexNet (computer vision) and deep Q (deep 
reinforcement learning).
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Fig. 2 | Hardware solutions to computational problems. a, A one-resistor 
RRAM crossbar array, and how such a circuit can be incorporated into a complete 
computer architecture, in this case, a von Neumann architecture. Alternative 
crossbar implementations may have a RRAM connected to a transistor (1T1R) to 
allow for individual device selection, or may use pairs of RRAMs to encode signed 
values80. ADC, analogue-to-digital converter; LAU, linear algebra unit; I/O, input–
output. b, Schematic illustrating how an in-memory circuit may be incorporated 
into a complete computer architecture as data compute memory. In this case, 
the separate program and data memories make this a Harvard architecture. 
The control unit fetches and executes instructions from the program memory, 
including commands for in-memory computations to be performed, and can also 
fetch and send data to the FPU and ALU for processing. c, Scatter plot showing 
the reported accuracies on the MNIST dataset of several technologies currently 
being researched. Supplementary Tables 1 and 2 provide the models and details 
of these. V, input voltage; G, RRAM conductance; I, output current.

Box 1

Definitions
Computational problem: a relationship between a set of inputs 
and outputs that defines some problem a computer can solve. For 
example, the problem of factorization takes some number as an 
input and has the factors of that number as an output.

Algorithm: a sequence of operations that transforms some input 
into an output, which is the solution to a computational problem, 
independent of implementation.

Computer architecture: an abstract description of a computer, 
such as an instruction set architecture, which defines functionality 
but not the physical implementation.

Computer device: an individual device used to represent data for 
computation, for example, a transistor, or a RRAM.

Software: an implementation of an algorithm or algorithms 
generally intended to be executed on reprogrammable digital 
CMOS hardware (for example, a microprocessor).

Neuromorphic system: a hardware device or circuit inspired by the 
behaviour of biological neural systems.

Fixed-function digital hardware: a device or circuit that processes 
data using digital logic in a fixed manner. For example, an H.264 
decoder is an ASIC designed to decode video streams encoded in a 
common format.

Programmable architectures: a piece of hardware that can be 
reprogrammed for arbitrary functionality, such as a microprocessor. 
Such a system reuses the same logic elements for different 
applications.

Hardware microarchitecture: the physical specification of an 
instruction set architecture, defining ALUs, buses, registers and  
so on.

http://www.nature.com/natureelectronics
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Direct TensorFlow matrix operations dominate the execution time 
in only two of the eight networks: deep speech (89%) and variational 
autoencoder (58%). For VGG-19, AlexNet, deep Q and residual networks, 
over 80% of the execution time was taken up by convolution operations, 
predominantly Conv2D, which is mainly a dot product operation. The 
other two convolution operations, Conv2DBackpropFilter and Con-
v2DBackpropInput are, however, not purely matrix operations, but 
also involve calculation of gradients, that is, differentiation.

Processing in-memory systems also exhibit similar trends30, with 
convolution operations being the most computationally intensive 
across three ANN models (VGG-19, AlexNet and a deep convolutional 
generative adversarial network). This analysis also showed comparable 
operation times for in-memory and conventional central processing 
units (CPUs), with in-memory solutions being faster overall due to the 
reduced data transfer times. One interesting example is the text transla-
tion task. In this, over 50% of the execution time does not involve matrix 
operations, but rather element-wise and data movement operations. 
These characterizations only explore ANNs, however, and alternative 
ML methods may benefit from similar characterizations.

It is important here to also consider Amdahl’s law31. This states that 
the performance gained by optimizing one part of a system is limited 
by the proportion of time the improved part is used. Even though an 
accelerator may improve the performance of an operation, such as 
MVM, if that operation is only a small part of the execution time of a 
method, then the overall performance improvement will be minimal.

We also note that the most successful accelerators are fully inte-
grated solutions, rather than a circuit performing a specific computa-
tion (Fig. 3c)26. This means their development involves input at multiple 
layers of abstraction, from the device level to the architecture level. 
Researchers at Google have, for instance, described the key considera-
tions for the development of their v2 and v3 TPUs27, where tasks were 
divided into two groups: those that need to be done well and those that 
can be done to a working level.

The tasks that must be done well consisted of: build quickly (fast 
design and fabrication of hardware, such as using readily available 
components and ‘good enough’ designs); achieve high performance 
(high-bandwidth buses and memory, systolic array structure for high 
computation density, use of the bfloat16 format, instruction-level 
parallelism); scale efficiently (ability to add multiple processors to 
cope with increasingly complex problems and datasets); easily adapt to 
new workloads (bfloat16 is easy for ML software to use, chip developed 
alongside compiler team to ensure programmability, the terminol-
ogy of linear algebra used due to its generality); and be cost effective 
(the systolic array structure allows high density without demanding a 
large chip area, bfloat16 reduces hardware and energy costs, dual-core 
design, compiler-controlled memory hierarchy). This illustrates the 
importance of considering not just the device but also the compiler, 
the data precision and the instruction-level architecture.

Novel devices as alternatives to digital silicon 
electronics
Traditional semiconductor roadmaps rely on the continuation of scal-
ing laws and thus a key focus of device and materials research is explor-
ing potential replacement to conventional silicon and digital CMOS. 
However, many novel technologies fail to compete with digital CMOS 
on metrics of energy, speed, scalability and price. However, this does 
not make them non-starters for computing applications. For example, 
in the analogue domain, the addition of two parallel 8-bit numbers 
requires only a single wire, using Kirchhoff’s current law, but a digi-
tal CMOS circuit requires approximately 240 transistors32. Analogue 
multiplication requires 4 to 8 transistors, whereas digital multiplica-
tion demands as many as 3,000 transistors. Non-digital approaches 
can thus offer notable improvements in the efficiency and resource 
requirements of certain computations.

We highlight here three examples of such complementary tech-
nologies, where novel devices and materials are applied as solutions 
to computational problems. (See Supplementary Section 4 for an 
overview of novel devices as alternative to digital silicon electronics.)

Non-volatile memories for MVM
One example of mapping a computational problem to novel devices 
is the commonly explored use of non-volatile memories in crossbar 
arrays (Fig. 2a) to implement MVM operations. These use Ohm’s law 

Box 2

Computer architectures
The von Neumann architecture stores program and data memory 
in the same place, whereas the Harvard architecture stores them 
separately. The main limitation of the von Neumann architecture is 
that, while loading an instruction from program memory, it cannot 
load or process data.

Von Neumann architecture:

Harvard architecture:

Input
device

Output
device

Memory unit

Program
memory Data memory

ALU

Central processing unit

Control unit

I/O

Registers

ALU

Control unit

Table 2 | Dominant TensorFlow operation categories in 
contemporary ML workloads

TensorFlow operation Computational problems

Element-wise arithmetic Addition, subtraction, multiplication, 
division, exponentiation, logistic function

Matrix operations Matrix multiplication

Reduction and expansion Logistic function, search, gradient, addition

Convolution Matrix multiplication, differentiation

Random sampling Non-uniform random number generation

Optimization Moving average, differentiation

Data movement Array operations

Dominant TensorFlow operation categories in contemporary ML workloads29 and their 
underlying computational problems.
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and Kirchhoff’s law, where the sum of currents from each device gives 
a final output current. The value of the output current corresponds to 
a particular signal strength. The major attraction of this approach for 
computer architects is that it substantially reduces the complexity of 
the MVM operation.

Using the non-volatile memory crossbar approach, the entire 
operation in the analogue domain is completed in a single digital cir-
cuit’s clock cycle, reducing the complexity from 𝒪𝒪𝒪n2) to 𝒪𝒪𝒪1) (ref. 33), 
that is, constant time. (See Supplementary Section 5 for an overview 
of computational complexity theory and big-O notation.) In Supple-
mentary Section 5, we note that an algorithm’s complexity is independ-
ent of the hardware on which it is running, that is, an algorithm will 
remain 𝒪𝒪𝒪n2) regardless of implementation, and this remains the case 
here. MVM takes 𝒪𝒪𝒪n2)  time in software running on a CPU and 𝒪𝒪𝒪n) 
space in memory. In contrast, MVM takes 𝒪𝒪𝒪1) time using a crossbar, 
but it requires 𝒪𝒪𝒪n2) devices to perform. The complexity thus transfers 
from time to space, as the crossbar performs the MVM operation, rather 
than the CPU.

A key advantage of non-volatile memories in the above example 
is that only one or two devices are required (for example, one memory 
or one transistor and one memory, depending on the system con-
figuration), compared with potentially thousands using digital logic, 
meaning a substantial reduction in materials, and thus potential for 
higher-density circuits.

As an active field of research, non-volatile memory crossbars 
have been demonstrated for a range of ML implementations, includ-
ing DNNs34, convolutional neural networks (CNNs)35,36 and SNNs37–39. 
However, non-volatile memory implementations face a number of 
well-established challenges, including interdevice variation, cycle 
endurance and parasitic wire resistance, which becomes an issue in the 
large arrays required by modern ML applications. These are engineer-
ing challenges that can be solved through research in multiple domains, 
with a large part of this being addressed by the materials community. 
For example, wire resistance can be reduced by three-dimensional 
(3D) integration40, and physical mechanisms such as Mott transition 

RRAM can be exploited to reduce variability and improve endurance41. 
Avenues for improving RRAM performance include: interface engi-
neering, element doping of functional materials and introduction of 
low-dimensional materials42. Non-volatile memory-based implementa-
tions of CNNs offer a solution to some of the scalability issues affecting 
fully connected solutions. In particular, they require fewer weights and 
thus fewer devices, reducing both the influence of parasitic resistances 
and the precision issues resulting from interdevice variation. Thus, 
non-volatile memory approaches would also benefit from suitably 
designed CNN architectures.

Magnetic tunnel junctions for stochastic computing
Although magnetic random-access memories (MRAMs) have been pro-
posed as a potential ‘universal memory’43, they also have applications 
for computation. One particularly interesting application is proba-
bilistic computing using magnetic tunnel junctions (MTJs) as p-bits. 
The term p-bit initially described a switch that stores a bit, either 1 or 
0, by representing the bit as a microstate44. A microstate is a specific 
microscopic configuration that a thermodynamic system occupies 
with some probability. Contemporary work instead considers p-bits as 
a computational primitive analogous to bits in Boolean logic, or qubits 
in quantum computing45. Unlike bits, which are either 1 or 0 at a given 
moment, or qubits, which exist in a superposition of states, where 
they are both 1 and 0, p-bits rapidly flip between 1 and 0 and so have a 
probability of being 1 or 0 at a given moment. In essence, p-bits are a 
hardware implementation of a Bernoulli random variable. This property 
allows for them to directly perform computations on probabilities, 
athough p-bits also have quantum-inspired and ML applications46. 
For example, p-bits can implement adiabatic quantum computing 
algorithms to perform integer factorization47, by considering it as an 
optimization problem.

Although not implementing p-bits specifically, strained magnetic 
tunnel junctions (S-MTJs) can be used for probabilistic computation48. 
In this approach, the magnetic domain of the S-MTJ represents a prob-
ability vector, with each digit representing a possible outcome of a 
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Fig. 3 | Metrics for evaluating a given solution to an ML task. a, Diagram 
showing a black-box accelerator and the corresponding input–output 
information for the metrics. b, Radar plot comparing four ML hardware 
accelerators8,34,35,64. c, Table showing the data from ML accelerators in the 
literature used to determine figures of merit. Each is for inference on the MNIST 

dataset21. The data size in each case is the number of pixels (784 in a 28 × 28 
image) multiplied by the number of bits per pixel (8 bits in a 255-shade greyscale 
image), giving a total of 6,272 bits. For DTP, higher is better; for DEE and EE, lower 
is better. The OxRAM and memristor systems all use a 1T1R structure, whereas the 
digital system uses digital CMOS technology.
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discrete random variable, as opposed to using MTJs as a p-bit. Com-
pared with an implementation of the same Bayesian network using 
5-bit digital CMOS multipliers, S-MTJ simulations suggest area reduc-
tions of up to 127 times, a 214-times power reduction and a 70-times 
lower latency.

The key difference between p-bits and MRAMs is that p-bits make 
use of a typically undesirable property of MTJs: the instability resulting 
from superparamagnetism. Superparamagnetism is the phenomenon 
whereby, under the influence of temperature, the magnetization of the 
magnet randomly flips direction. A high energy barrier (Eb) is desirable 
for regular MTJs as it increases the time taken for this flip to occur. For 
p-bits, where this flipping is desirable, a low- or zero-barrier magnet, 
where Eb < kBT (where kB is Boltzmann’s constant and T is temperature) 
is ideal, as the time period for a flip would be less than 1 ns (ref. 46). To 
the best of our knowledge, all p-bit implementations utilize a traditional 
MTJ structure with bulk materials, and so there is scope for impact-
ful research in this area using two-dimensional materials. These are 
predicted to have very low magnetic anisotropy energies: the barrier 
of monolayer CrI3 has been measured to be as low as 0.66 meV (ref. 49) 
corresponding to a transition time, τN, of about 1 ns. Another candi-
date material, strained Fe-doped MoS2, has a barrier of about 1.3 meV  
(ref. 50), corresponding to a τN of 1.06 ns, decreasing with the addition 
of strain. For comparison, p-bit approaches using bulk materials give 
best-case retention times of a few milliseconds47, with other simulations 
giving a time of 1.93 ms (ref. 51). S-MTJs can have retention times of a few 
nanoseconds52–54; however, these require an additional piezoelectric 
layer, adding material and space costs.

More generally, p-bits are simply tunable random number genera-
tors. Spintronics are just one possible implementation of p-bits: there 
may be inherent properties of other materials, that is, controlled sto-
chastic processes, which would be equally useful or even better-suited 
to implementing p-bits. This illustrates well the intersection of devices, 
materials and computational research. As p-bits offer a fundamentally 
different way to do computations by physically representing prob-
abilities, they map computational problems such as Bayesian networks 
directly to hardware, which is of interest to both computing and devices 
researchers. However, as their performance is directly tied to materi-
als properties, the materials selection and engineering aspect links 
directly to the computational problem.

Resistive memories for reconfigurable logic
Although selection of suitable materials for a given application is 
important, materials design and engineering also offers an avenue 
for substantial impact. Materials design and development may follow a 
similar format to product design, serving as a natural interface between 
materials developers and system designers55. Likewise, ‘intelligent 
matter’56 provides another interesting opportunity. So-called intel-
ligent matter falls into several classes: swarm-based, self-organized 
materials, soft-matter implementations and solid-matter implementa-
tions. The final category has been the primary area of exploration for 
computing applications, with reconfigurable devices being a growing 
area of research.

‘Molecular memristors’57, show how selective engineering of mate-
rials allows for computational functionality to be embedded directly 
into materials properties. The molecular memristor uses different 
redox states to represent different logic functions, including XNOR, 
NAND, NOR, AND and OR on up to four bits, as well as using an array of 
devices to implement a decision tree accelerator. The reconfigurable 
nature of the devices makes a circuit of them something analogous to 
a field-programmable gate array but with a potentially smaller device 
footprint. As the devices implement digital logic functionality, their 
performance compared with conventional CMOS is of interest. As the 
memristors implement logic functions directly in a single device, this 
means fewer devices are needed for a given logic gate, reducing the 
hardware and materials footprint. Another attractive prospect of this 

approach is that the devices have a high cycle endurance (about 1010), 
as well as a very low switching energy (360 aJ). The authors note that, 
given the intended application of these devices, one must consider also 
the energy required to move data, and so system-level metrics are more 
sensible for comparison, an idea we discuss in ‘Metrics, applications, 
and avenues of collaboration’. Given the digital nature of these devices, 
it is also worthwhile to consider how they match Keyes’ criteria3. The 
presented devices are passive and so do not have gain, nor do they 
appear to have input–output isolation, although the incorporation of 
a transistor for a one transistor, one resistive memory (1T1R) structure 
might aid with both of these. The devices do, however, appear to have 
comparable on–off switching times.

An interesting application of reconfigurable devices would be 
hardware implementation of activation functions. For example, 30% 
to 40% of the execution time for machine translation using GPUs is 
taken up by the final SoftMax activation layer58. Activation functions 
are a key part of ANNs, as they introduce nonlinearities to ANNs, which 
is vital for deep networks. In SNNs, the activation function acts as a 
threshold, determining whether a given neuron should fire. Table 3 
shows the most common activation functions and their complexities. 
If the wrong activation function is chosen for a given ANN hardware 
implementation, then it can severely limit the performance. An imple-
mentation of activation functions that directly exploits material or 
device properties may then offer substantial advantages. If some novel 
device implements an activation function in the analogue domain and 
operates in a single digital clock cycle, then the activation functions 
could be reduced to a complexity of 𝒪𝒪𝒪1).

Some work exists in this domain already59,60; however, there does 
not yet seem to be a notable focus in this area, despite the potential 
impact. For example, machine vision integrating sensing and ANN 
processing61 can give reduced hardware footprints, although off-chip 
implementation of the activation function introduces communication 
and hardware overheads. A fully integrated solution would further 
improve the impact of such an approach. Suitably designed reconfigur-
able devices may then simultaneously reduce the hardware footprint 
while enabling more general circuitry in this domain.

Metrics
Establishing standard figures of merit to evaluate and compare 
approaches is important and some work on benchmarks for ML accel-
erators already exists26,62. These discuss ideas such as quantifying the 
energy breakdown for an in-memory accelerator based on SRAM 
and RRAM. Inference and training also have different demands. For 
example, almost 68% of the energy during training is used for DRAM 
access62. Constrained and unconstrained die areas also have an influ-
ence, with 22 nm RRAM-based implementations showing that larger 
dies have a lower total energy consumption, at the cost of material 

Table 3 | Common activation functions and associated 
(worst case) complexities for ANNs

Function Equation Complexity

Identity f(x) = x 𝒪𝒪𝒪n)
Binary step

f𝒪x) = { 0, x < 01, x ≥ 0
𝒪𝒪𝒪1)

Tanh f𝒪x) = tanh𝒪x) 𝒪𝒪𝒪M(n) log(n))a

ReLU
f𝒪x) = { 0, x < 0x, x ≥ 0

𝒪𝒪𝒪n)

Sigmoid f𝒪x) = 1
1+e−x

𝒪𝒪𝒪M(n) log(n))a

ArcTan f𝒪x)tan−1𝒪x) 𝒪𝒪𝒪M(n) log(n))a

M(n) represents the complexity of a given multiplication algorithm. ReLU, rectified linear unit. 
aUsing arithmetic-geometric mean iteration20.
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requirements. For example, a 228 mm2 die for inference requires about 
400 μJ of energy, compared with almost 600 μJ for a 6.5 mm2 die. For 
space-constrained applications, a 228 mm2 die may be unfeasible, and 
this serves as a good example of the trade-offs that are necessary when 
considering novel devices as solutions to computational problems. 
This work serves as a useful reference when considering the specific 
technologies for an RRAM in-memory accelerator. In contrast, the 
following metrics we propose are intended as system-level measures, 
applicable not just to ANN accelerators but also other accelerators, 
such as support vector machines (SVMs) or decision trees.

For standard benchmarks such as MNIST, simply reporting the 
classification accuracy is not a good measure, as the best-performing 
digital approaches utilize millions of parameters and thus billions of 
transistors and clock cycles. When compared with an implementation 
based on novel materials with only a few hundred devices, the compari-
son becomes unfair. In keeping with the perspective of viewing novel 
devices, materials and circuits as solutions to computational problems, 
we suggest that it is better to evaluate systems as black boxes, where 
the relations between inputs and outputs are used as performance 
indicators. We consider a general accelerator as a black box with the fol-
lowing output information available (Fig. 3a): input data size (number 
of bits; the number of bits in the input data for a single inference, for 
example, the size of a single image in bits); device count (the number 
of devices, that is, the total number of devices (for example, transis-
tors, RRAMs, p-bits and so on) in a system); die area (A; the die area in 
mm2); the number of layers (number of layers) (the number of device 
layers for 3D-integrated dies); total system power (TSP; the total power 
consumed by an accelerator); inference energy (Einf; the total number 
of joules required to perform a single inference or classification); infer-
ence time (tinf; the time taken in seconds to perform a single inference); 
data size (the size of the input and output data in bits or bytes); error 
(error on a given task as a percentage, for example, the percentage of 
incorrectly classified digits in MNIST).

Data throughput
Floating-point operations per second (FLOPS) is a common metric 
for CPUs and may be useful for ML accelerators if they operate on 
floating-point numbers. However, not all ML systems do. For example, 
binary ANNs operate on Boolean values, or an ANN may only accept inte-
gers. OPS rather than frames per second may make a better benchmark62 
as this is dataset dependent and suited in particular to computer vision 
tasks. We instead propose that a better metric is the data throughput 
(DTP) of a system, that is, how many bits of data an accelerator can 
process in a second. A metric such as multiply-accumulate (MAC) opera-
tions per second would only applicable to accelerators where MVM 
is the main operation. For systems such as decision trees, this metric 
does not make sense. Likewise, systems using dynamic vision sensors 
process spike events, rather than frames63 and so frames per second is 
not a useful metric. DTP is therefore platform agnostic and is applicable 
for both training and inference. We define the DTP as:

DTP = Numberof bits
tinf

. (1)

The issue of dataset-dependent measures does not apply in this case, 
as we intend our metrics be used to evaluate how a given accelerator 
performs on a given computational problem compared with others, 
that is, to evaluate like-for-like tasks.

Error efficiency
Many high-performance ANNs have over a million different parameters 
and many layers. This corresponds to a high cost in time, resources 
and energy consumption. By comparison, approaches based on novel 
materials and devices, such as RRAM crossbars, use substantially fewer 
resources; however, they generally have lower accuracies. Ideally, the 

higher the accuracy the better, but the time and power costs can offset 
the advantages of accuracy. For example, a facial recognition algorithm 
that unlocks a mobile phone only when it is 99.98% certain the right face 
has been scanned is not much good if it takes several minutes to run 
and severely depletes the battery. However, an ML algorithm used for 
medical diagnosis should be as accurate as possible. We suggest that 
the error efficiency (EE), which relates the wasted power (the prod-
uct of the error on a given task and the power for a single inference) 
to the total system power, that is, the overall power consumption of 
the accelerator, is a useful metric to evaluate devices. For example, 
in low-power environments, such as edge applications, larger CMOS 
feature sizes are used due to their lower leakage currents. However, 
these have larger switching energies than smaller processes, and so 
the energy for a single inference may be larger. Thus, the wasted power 
may be a larger proportion of the total system power. If a novel device 
was instead used, with much smaller power draw per inference but 
lower accuracy, then a lower accuracy may be compensated for by the 
improved energy efficiency. We define the EE as follows:

EE =
Error × Einf

tinf

TSP . (2)

Device error efficiency
Following from our proposal for EE as a metric, we propose a similar 
metric for the device count: device error efficiency (DEE). In effect, 
DEE looks at the proportion of wasted devices for a given inference 
operation. This relates the error per inference to the device density, 
and is equal to the product of the error and the density of devices (that 
is, the number of devices in a given die area), and so also encapsulates 
process geometry. To account for accelerators that use 3D integration 
to improve device density, we multiply the device density by the number 
of layers. For non-3D systems, this value is one. In a system where mate-
rial constraints are an issue, one may wish to trade accuracy for a lower 
device count. For example, a system with a low error but many devices 
may be less efficient per device than a system with a lower accuracy but 
far fewer devices, and so the latter may be more useful in material- or 
geometry-constrained environments. We thus define DEE as:

DEE = Error × Numberof layers × Numberof devices
A

(3)

Evaluation using metrics
As a demonstration of how our metrics can facilitate comparisons 
between different hardware accelerators, we present a comparison of 
several hardware accelerators from Fig. 2b. Figure 3c shows the data 
we use to calculate the figures of merit for the radar plot in Fig. 3b. We 
selected these to account for both different hardware implementa-
tions, for example, digital CMOS versus non-volatile memory, and 
different ML methods, for example, SNNs versus CNNs. As the data 
show, despite TrueNorth having the highest accuracy and device count, 
other approaches have a higher throughput. The metal–oxide resistive 
random-access memory (OxRAM)-based accelerator has the highest 
throughput, although it also has the largest DTP and better accuracy 
than the 3D-integrated memristor accelerator35, its higher power con-
sumption and lower device density means it is less competitive in EE 
and DEE. Owing to the greater device density enabled by 3D integra-
tion, the 3D-integrated memristor accelerator surpasses the others in 
DEE, despite the lowest reported accuracy. TrueNorth excels in error 
efficiency, with a very small amount of wasted energy compared with 
alternative approaches. These examples thus illustrate the value of 
our metrics, as simple measures of device count, power consump-
tion and accuracy do not necessarily mean a given solution is best 
in this respect. Particularly in the DTP, we see that the 3D-integrated 
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memristor accelerator35 is only a single order of magnitude faster than 
the standard memristor accelerator64, despite the reported number 
of operations per second (OPS) being much larger (1,460.7 TOPS s−1 
versus 81.92 GOPS s−1).

The example above also illustrates the value of considering a given 
device or circuit as a solution to a computational problem. Consider our 
definition of a computational problem in Box 1. In this instance, we have 
as an input a set of images showing handwritten digits and our outputs 
are a set of numbers from zero to nine. The hardware accelerator is, 
in this case, a solution to this problem, transforming the input into a 
desired output. Our metrics thus illustrate how different solutions to 
the same problem perform better or worse, depending on the target 
use-case. For low-power applications, we see that an approach such 
as TrueNorth performs the best, whereas for pure throughput, the 
OxRAM-based accelerator performs best. By considering the metrics 
and parameters we propose, we suggest that novel devices, materials 
and circuits can be better applied as solutions to computational prob-
lems. One analysis of ML workloads discusses the necessary trade-off 
between energy consumption and processing time30, particularly for 
in-memory approaches. Thus the ‘best’ performance is context specific.

Applications
Given the relatively poor performance of devices and systems based on 
novel materials when compared with conventional CMOS, application 
domains where the disadvantages become irrelevant or are minimal 
are of interest. Below, we suggest some example domains and device/
materials requirements for these areas.

Disposable electronics
A growing area of interest is disposable electronics. These are circuits 
that are designed to be used a limited number of times before being 
thrown out. Examples may include medical sensors or packaging. Given 
their inherent limited lifespans, such circuits would not need high 
endurance and would also need to be very low cost. Thus, CMOS pro-
cesses may be prohibitively expensive or unsuitable for such applica-
tions. There is also a large potential overlap with printed electronics in 
this domain and so the rigidity of CMOS devices may also be an issue. In 
this area, devices based on materials such as two-dimensional materi-
als or polymers65 would be ideal, due to their ease of manufacture and 
flexibility. Furthermore, their disposable nature means that the low 
cycle endurance of such devices would not be an issue.

Space electronics
The space sector has grown rapidly in recent years, with the number of 
scientific and commercial launches growing since 200466. Given the 
usefulness of ML and hardware acceleration, it is clear that there is scope 
for ML hardware accelerators in the space sector. Such applications can 
be considered computing at the extreme edge; space probes, rovers and 
satellites operate on very low power, with very limited bandwidth for 
data transmission. Thus, pre-processing of gathered data, for example, 
via some edge ML application, may have a large impact on the informa-
tion gained from such missions. However, space electronics have very 
specific requirements. In addition to low-power operation, the large 
amounts of radiation both in space places unique demands on circuits, 
in particular, their need for radiation hardness. Some work already exists 
exploring the radiation hardness of RRAMs67,68 and a design flow for 
rad-hard non-volatile memories already exists69. For ML inference accel-
erators for space applications, materials and devices with a robustness 
to radiation would be essential. As space missions are often produced 
only once, scalable fabrication would also be less of an issue.

Biocompatible electronics
Medical implants are a growing field of research and industry and such 
devices also have specific requirements, biocompatibility being par-
ticularly important. For example some neural implant that interfaces 

with neurons to predict seizures would need to both operate on very 
low power and be biocompatible. Some examples of experiments study-
ing biocompatibility on flexible electronics already exist70, but further 
work would be of interest.

Quantum electronics
Quantum computing is a burgeoning field with a number of potential 
applications and quantum ML is a growing field of research. Many quan-
tum computers operate at very low temperatures to minimize decoher-
ence and reduce errors. Non-volatile memories may have utility here, 
and some work on quantum memristors already exists71,72. Given such 
devices would probably interface with quantum hardware, they would 
need to perform at low temperatures and so temperature-dependent 
measurements, as well as experiments to explore the amount of noise 
in different devices would be of interest.

Recurrent networks
Recurrent neural networks (RNNs) are another avenue where the met-
rics for a good device may be different. RNNs are a type of ANN that have 
a time dependence, making them suited to tasks using time series data, 
such as natural language processing73. RNNs use previous outputs as 
inputs, that is, the activation at a given time is a function of the activa-
tion at a previous time. Such networks may not require as many layers 
and so smaller arrays of devices may be suitable. However, given that 
RNNs may operate on many time steps, a high cycle endurance would be 
necessary. Reservoir computing is an ML approach that builds on sev-
eral RNN models. The reservoir part of a reservoir computer is treated 
as a black box, but has two requirements: it must be made up of indi-
vidual nonlinear units and be able to store information74. A reservoir 
computer uses the reservoir to map inputs into a higher-dimensional 
computing space and then conducts pattern analysis in a readout sec-
tion. Unlike other ANN approaches, a reservoir computer does not 
train the weights of the input or reservoir sections, only the readout. 
This theoretically means a simplified and faster training process, as 
simple training algorithms, such as linear regression, can be used, with 
a focus on reduced computational cost compared with alternative 
approaches75. As with accelerators for other ML approaches, reservoir 
computers have been realized using different devices and materials, 
including a photonics-based approach76, or even a literal reservoir in 
the form of a water tank77.

Table 4 | The 13 computational dwarfs identified by 
University of California, Berkeley researchers and their 
corresponding applications in ML

Dwarf ML application

Dense linear algebra SVMs, PCA, ICA

Sparse linear algebra SVMs, PCA, ICA

Spectral methods Spectral clustering

N-body methods –

Structured grids –

Unstructured grids Belief propagation

MapReduce Expectation maximization

Combinational logic Hashing

Graph traversal Bayesian networks, decision trees, natural 
language processing

Dynamic programming Forwards–backwards, inside–outside, 
variable elimination, value iteration

Back-track and 
branch-and-bound

Kernel regression, constraint satisfaction, 
satisfiability

Graphical models Hidden Markov models

Finite state machine –
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Outlook
In 2006, researchers at University of California, Berkeley met to discuss 
and make predictions for the transition towards parallel computing78. 
They described 13 ‘dwarfs’: algorithmic methods that describe patterns 
of data communication and computation. Not all the dwarfs are appli-
cable to ML, and there is some overlap in applications (dense and sparse 
linear algebra both have utility for SVMs, principal component analysis 
(PCA) and independent components analysis (ICA), for example). These 
dwarfs pose an additional consideration. Conventional wisdom may 
suggest that increased parallelization always improves computation 
efficiency. However, one must also consider the movement of data 
itself, and the complexity of a given computation. The classification 
also accounts for ML applications. Table 4 lists the 13 dwarfs and their 
corresponding applications in ML.

Fundamentally, most ML applications are collections of more 
general computational problems. The properties of novel devices 
and materials may have the potential to perform these computations 
in different and more efficient ways than existing algorithms. If we 
consider the fundamental ML computations in isolation, ignoring 
the minutiae of a given ML application, we may find that novel devices 
have wider potential applications than simply implementing a given 
ML model. If we consider the fact that non-volatile memory crossbars 
implement MVM, rather than a neural network, we see that they also 
have utility as linear algebra accelerators, giving them application to 
the first two dwarfs.

Modern ML implementations in fixed-function hardware typi-
cally make use of the bfloat16 format, as it allows for fast conversion 
to 32-bit floating-point formats while reducing ML algorithm storage 
requirements and computation time. For a 7 nm process, bfloat16 
offers a 1.5-times reduction in energy consumption compared with a 
conventional Institute of Electrical and Electronics Engineers 16-bit 
float format27. We thus propose that this be a common standard of 
precision used for ML systems.

We previously discussed the different understandings of the term 
‘computer architecture’ between communities, and how a simple MVM 
circuit is not a computer architecture, but rather a hardware imple-
mentation of an algorithm. These different understandings of the term 
hamper collaboration, and greater precision is required, as not all ML 
accelerators are fully fledged computer architectures.

Intel’s Loihi9 is an example of an accelerator that can be considered 
a computer architecture in the strict definition of the term. Loihi’s 
instruction set features common operations such as bitwise operations, 
comparisons (for example, less than, not equal), and basic arithmetic 
operations, but also includes specific instructions for spiking neural 
networks (SPIKE and PROBE). The former generates a spike and the 
latter sends probe data to a processor. This is another key point for 
early-stage collaboration between device physicists and computer 
architects: the development of new instruction sets. For their incor-
poration into CPU architectures, accelerators such as in-memory 
units will need corresponding instruction sets. Although the specific 
implementation may vary (for example, MRAM, RRAM and so on), a 
standardized instruction set means that a given implementation can 
account for these accelerators.

A final suggestion we propose is the standardized report-
ing of the computational cost in devices articles. This will not only 
help researchers consider the scalability and viability of their own 
research but also help readers and those who build on their work to 
better direct subsequent investigations. Returning to the example of 
non-volatile-memory-based MVM operations, we can see that chang-
ing the architecture reduces the time complexity of the operation, but, 
more importantly, this does not smuggle the complexity elsewhere: 
the resource complexity grows linearly with input size.

For ML approaches, whether based on digital logic implemented 
in CMOS, or on digital- or analogue-domain computation using novel 
materials and devices, the understanding that any ML algorithm has 

three components makes this easy to calculate, as the complexity of the 
system or algorithm will be whichever term in the learning equals repre-
sentation plus evaluation plus optimization equation grows the fastest.

Many review articles in the device literature discuss emerging 
technologies and their principles of operation, but ultimately end 
with the message that useful implementations are a distant prospect 
due to engineering challenges and issues with scalability compared 
with current CMOS devices. We instead suggest that emerging tech-
nologies may be better applied and commercialized if researchers 
shift their focus to the direct mapping of computational problems to 
the unique properties of new devices to achieve better performance 
in a given application than conventional digital CMOS devices using 
the above metrics.

Data availability
All relevant data are included in the paper and/or its Supplementary 
Information files.
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